
ztd.text
Release 0.0.0

ThePhD & Shepherd's Oasis, LLC

Jan 15, 2024

CONTENTS:

1 Who Is This Library For? 3

2 Indices & Search 461

Index 463

i

ii

ztd.text, Release 0.0.0

The premiere library for handling text in different encoding forms and reducing transcoding bugs in your C++ software.

CONTENTS: 1

ztd.text, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS THIS LIBRARY FOR?

If:

• you want to convert from one Unicode encoding to another Unicode encoding;

• you want a no-overhead way to track and keep data in a specific encoding (Unicode-based or not);

• you want a no-memory-overhead way to archive;

• you want to prevent data in the wrong encoding from infiltrating your application and causing Mojibake;

• you want to work with higher-level primitives (code points, graphemes) when iterating text that do not break
your text apart;

• you want safe defaults for working with text;

then ztd.text is for you!

1.1 Quick ‘n’ Dirty Tutorial

1.1.1 Setup

Use of this library is officially supported through the use of CMake. Getting an updated CMake is difficult on non-
Windows machines, especially if they come from your system’s package manager distribution which tends to be several
(dozen?) minor revisions out of date, or an entire major revision behind on CMake. To get a very close to up-to-date
CMake, Python maintains an version that works across all systems. You can get it (and the ninja build system) by using
the following command in your favorite command line application (assuming Python is already installed):

1 python -m pip install --user --update cmake ninja

If you depend on calling these executables using shorthand and not their full path, make sure that the Python “down-
loaded binaries” folder is contained with the PATH environment variable. Usually this is already done, but if you have
trouble invoking cmake --version on your typical command line, please see the Python pip install documentation
for more details for more information, in particular about the --user option.

If you do not have Python or CMake/ninja, you must get a recent enough version directly from CMake and build/install
it.

3

https://en.wikipedia.org/wiki/Mojibake
https://cmake.org/
https://pip.pypa.io/en/stable/cli/pip_install/
https://pip.pypa.io/en/stable/cli/pip_install/
https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-user
https://cmake.org/download/

ztd.text, Release 0.0.0

1.1.2 Using CMake

Here’s a sample of the CMakeLists.txt to create a new project and pull in ztd.text in the simplest possible way:

1 project(my_app
2 VERSION 1.0.0
3 DESCRIPTION "My application."
4 HOMEPAGE_URL "https://ztdtext.readthedocs.io/en/latest/quick.html"
5 LANGUAGES C CPP
6)
7

8 include(FetchContent)
9

10 FetchContent_Declare(ztd.text
11 GIT_REPOSITORY https://github.com/soasis/text.git
12 GIT_SHALLOW ON
13 GIT_TAG main)
14 FetchContent_MakeAvailable(ztd.text)

This will automatically download and set up all the dependencies ztd.text needs (in this case, simply ztd.cmake,
ztd.platform, ztd.idk, and ztd.cuneicode). You can override how ztd.text gets these dependencies using the stan-
dard FetchContent described in the CMake FetchContent Documentation. One that happens, simply use CMake’s
target_link_libraries(...) to add it to the code:

1 # ...
2

3 file(GLOB_RECURSE my_app_sources
4 LIST_DIRECTORIES OFF
5 CONFIGURE_DEPENDS
6 source/*.cpp
7)
8

9 add_executable(my_app ${my_app_sources})
10

11 target_link_libraries(my_app PRIVATE ztd::text)

Once you have everything configured and set up the way you like, you can then use ztd.text in your code, as shown
below:

1 #include <ztd/text.hpp>
2

3 int main(int, char*[]) {
4 // overlong encoded null
5 // (https://ztdtext.rtfd.io/en/latest/api/encodings/mutf8.html)
6 const char mutf8_text[]
7 = { 'm', 'e', 'o', 'w', '\xc0', '\x80', 'm', 'e', 'o', 'w', '!' };
8 const auto is_valid_mutf8_text
9 = ztd::text::validate_decodable_as(mutf8_text, ztd::text::compat_mutf8);

10

11 std::cout << "The input text is "
12 << (is_valid_mutf8_text.valid ? "valid " : "not valid ")
13 << "MUTF-8 text!" << std::endl;
14

15 return 0;
(continues on next page)

4 Chapter 1. Who Is This Library For?

https://ztdidk.readthedocs.io/en/latest/
https://ztdcuneicode.readthedocs.io/en/latest/
https://cmake.org/cmake/help/latest/module/FetchContent.html#command:fetchcontent_declare

ztd.text, Release 0.0.0

(continued from previous page)

16 }

Let’s get started by digging into some examples!

Note: If you would like to see more examples and additional changes besides what is covered below, please do feel
free to make requests for them here! This is not a very full-on tutorial and there is a lot of functionality that, still, needs
explanation!

1.1.3 Transcoding

Transcoding is the action of taking data in one encoding and transforming it to another. ztd.text offers many ways to
do this; here are a few different ways that have different expectations, needs, meanings, and tradeoffs.

Transcode between Unicode Encodings

Going from a Unicode Encoding to another Unicode Encoding just requires going through the ztd::text::transcode
API. All you have to do after that is provide the appropriate ztd::text::utf8, ztd::text::utf16, or ztd::text::utf32 encoding
object:

1 #include <ztd/text.hpp>
2

3 #include <string>
4

5 int main(int, char*[]) {
6 constexpr const auto& input = U"";
7 constexpr const auto& wide_input = L"";
8 // properly-typed input picks the right encoding automatically
9 std::u16string utf16_emoji_string

10 = ztd::text::transcode(input, ztd::text::utf16);
11 // explicitly pick the input encoding
12 std::u16string utf16_emoji_string_explicit
13 = ztd::text::transcode(input, ztd::text::utf32, ztd::text::utf16);
14 // must use explicit handler because "wide execution" may be
15 // a lossy encoding! See:
16 // https://ztdtext.rtfd.io/en/latest/design/error%20handling/lossy%20protection.

→˓html
17 std::u16string utf16_korean_string_explicit
18 = ztd::text::transcode(wide_input, ztd::text::wide_execution,
19 ztd::text::utf16, ztd::text::replacement_handler);
20 // result in the same strings, but different encodings!
21 ZTD_TEXT_ASSERT(utf16_emoji_string == utf16_emoji_string_explicit);
22 ZTD_TEXT_ASSERT(utf16_emoji_string == u"");
23 ZTD_TEXT_ASSERT(utf16_korean_string_explicit == u"");
24 return 0;
25 }

1.1. Quick ‘n’ Dirty Tutorial 5

https://github.com/soasis/text/issues

ztd.text, Release 0.0.0

Transcode from Execution Encoding to UTF-8

The execution encoding is the encoding that comes with the system. It is typically the encoding that all locale data comes
in, especially for e.g. command line parameters on Windows. To encode from such an encoding to the highly successful
and popular UTF-8, you may use the same ztd::text::transcode as above with the appropriate ztd::text::(compat_)utf8:

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <string_view>
5 #include <iostream>
6

7 int main(int argc, char* argv[]) {
8 if (argc < 1) {
9 return 0;

10 }
11 for (int i = 0; i < argc; ++i) {
12 // print each argument as its UTF-8 version
13 // the default error handler is the "replacement" error handler:
14 // anything unrecognized will use the usual replacement "".
15 std::string_view input = argv[i];
16 std::string utf8_string
17 = ztd::text::transcode(input, ztd::text::compat_utf8,
18 ztd::text::execution, ztd::text::replacement_handler);
19 // directly write to ouput (terminal) to prevent any internal conversions
20 // to/from an internal encoding while writing output
21 std::cout.write(utf8_string.data(), utf8_string.size());
22 // newline + flush
23 std::cout << std::endl;
24 }
25 return 0;
26 }

The compat_ prefix is to make sure we are using the typedef definition of the templated ztd::text::basic_utf8
that uses char units. This is helpful for working with legacy data streams. We use std::cout.write(...) explicitly
to prevent as much direct interface from the terminal or locales as possible to write the data to the terminal, ensuring
that on competent systems with reasonably up-to-date terminals will display out UTF-8 data untouched (and, hopefully,
properly).

Transcoding with Output Container Controls

Occasionally, you need to:

• serialize to a container that isn’t a std::basic_string/std::(u8/16/32)string;

• OR, you need to serialize to a container but you need to know if anything went wrong.

This is where the functions that are suffixed _to come into play, and where the template argument provided to the
non-suffixed ztd::text::transcode<...>(...) come into play.

1 #include <ztd/text.hpp>
2

3 #include <vector>
4 #include <list>

(continues on next page)

6 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

5 #include <deque>
6 #include <string>
7 #include <string_view>
8

9 int main(int, char*[]) {
10 constexpr const char32_t input[] = U"";
11 constexpr const std::u16string_view utf16_expected_output = u"";
12

13 // a vector instead of a std::u16string
14 std::vector<char16_t> utf16_emoji_vector
15 = ztd::text::transcode<std::vector<char16_t>>(input, ztd::text::utf16);
16

17 // a list (doubly-linked list) instead of a std::u16string
18 std::list<char16_t> utf16_emoji_list
19 = ztd::text::transcode<std::list<char16_t>>(input, ztd::text::utf16);
20

21 // insert into a std::deque, with additional return information
22 auto utf16_emoji_deque_result
23 = ztd::text::transcode_to<std::deque<char16_t>>(input, ztd::text::utf16);
24 // transcode_into_raw returns a ztd::text::transcode_result<...>
25 // which we can inspect for error codes and more!
26 // the error_code should be "ok"
27 ZTD_TEXT_ASSERT(
28 utf16_emoji_deque_result.error_code == ztd::text::encoding_error::ok);
29 // No errors should have occured, even if they were "handled" and still
30 // returned "ok"
31 ZTD_TEXT_ASSERT(!utf16_emoji_deque_result.errors_were_handled());
32 // The input should be completely empty
33 ZTD_TEXT_ASSERT(utf16_emoji_deque_result.input.empty());
34

35 // The results should all be the same, despite the container!
36 ZTD_TEXT_ASSERT(
37 ztd::ranges::equal(utf16_emoji_vector, utf16_expected_output));
38 ZTD_TEXT_ASSERT(ztd::ranges::equal(utf16_emoji_list, utf16_expected_output));
39 ZTD_TEXT_ASSERT(ztd::ranges::equal(
40 utf16_emoji_deque_result.output, utf16_expected_output));
41 return 0;
42 }

The returned ztd::text::transcode_result from the _to-suffixed function gives more information about what went wrong,
including the error count and any other pertinent information.

Transcoding into any Output View/Range

Sometimes, just picking the container to serialize into isn’t enough. After all, in the above examples, space will be
automatically allocated as the container is added to. This may not be desirable for memory-constrained environments,
for places with strict performance requirements that cannot risk touching an allocator, and within tight loops even under
normal desktop and server environments.

Therefore, the _into suffixed functions allow explicitly passing in a range to be written into that will keep writing
into the available space between the range’s begin and end (e.g., from a std::vector’s .data() to it’s .data() +
.size()).

1.1. Quick ‘n’ Dirty Tutorial 7

ztd.text, Release 0.0.0

1 #include <ztd/text.hpp>
2

3 #include <ztd/idk/span.hpp>
4

5 #include <string>
6 #include <string_view>
7 #include <deque>
8

9 int main(int, char*[]) {
10 constexpr const ztd_char8_t input[] = u8"barkbark!";
11 constexpr const std::u16string_view expected_output = u"barkbark!";
12

13 // Get a deque with a pre-ordained size.
14 std::deque<char16_t> utf16_deque(expected_output.size());
15 // Subrange indicating available space to write into
16 auto utf16_deque_output_view
17 = ztd::ranges::make_subrange(utf16_deque.begin(), utf16_deque.end());
18 // SAFE by default: if the container runs out of space, will not write more!
19 auto utf16_deque_result = ztd::text::transcode_into(input, ztd::text::utf8,
20 utf16_deque_output_view, ztd::text::utf16, ztd::text::pass_handler,
21 ztd::text::pass_handler);
22

23 // Ensure that the error code indicates success.
24 ZTD_TEXT_ASSERT(
25 utf16_deque_result.error_code == ztd::text::encoding_error::ok);
26 // there were no errors handled for us while processing
27 ZTD_TEXT_ASSERT(!utf16_deque_result.errors_were_handled());
28 // We had (exactly enough) space.
29 ZTD_TEXT_ASSERT(ztd::ranges::equal(expected_output, utf16_deque));
30 // There is no more input or output space left
31 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf16_deque_result.input));
32 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf16_deque_result.output));
33

34 return 0;
35 }

The returned ztd::text::transcode_result from the _into-suffixed function gives more information about what went
wrong, including the error count and any other pertinent information. If a pivot is not used (described in a below
section), it will return a ztd::text::pivotless_transcode_result or a ztd::text::stateless_transcode_result, which just has
a few less data members to describe what happened.

If there is not enough space, then extra writing will not be done and it will stop and return an error of
ztd::text::encoding_error::insufficient_output_space:

1 #include <ztd/text.hpp>
2

3 #include <ztd/idk/span.hpp>
4

5 #include <string>
6 #include <string_view>
7

8 int main(int, char*[]) {
9 constexpr const ztd_char8_t input[] = u8"barkbark!";

(continues on next page)

8 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

10 constexpr std::size_t input_last_exclamation_mark_index
11 = ztdc_c_string_array_size(input) - 1;
12 constexpr const std::u16string_view full_expected_output
13 = u"barkbark!";
14 constexpr std::size_t truncated_input_size = 15;
15 // string_view containing: "barkbark" (no ending exclamation point)
16 constexpr const std::u16string_view truncated_expected_ouput
17 = full_expected_output.substr(0, truncated_input_size);
18

19 // SAFE by default: if the string runs out of space, will not write more!
20 std::u16string truncated_utf16_string(truncated_input_size, u'\0');
21 // Span indicating available space to write into
22 ztd::span<char16_t> truncated_utf16_string_output(truncated_utf16_string);
23 auto truncated_utf16_string_result = ztd::text::transcode_into(input,
24 ztd::text::compat_utf8, truncated_utf16_string_output, ztd::text::utf16,
25 ztd::text::pass_handler, ztd::text::pass_handler);
26

27 // We only had space for sixteen UTF-16 code units; expect as much from output
28 ZTD_TEXT_ASSERT(truncated_expected_ouput == truncated_utf16_string);
29 // The sequence was correct, but there wasn't enough output space for the full
30 // sequence!
31 ZTD_TEXT_ASSERT(truncated_utf16_string_result.error_code
32 == ztd::text::encoding_error::insufficient_output_space);
33 ZTD_TEXT_ASSERT(truncated_utf16_string_result.errors_were_handled());
34 // There is no more output space
35 ZTD_TEXT_ASSERT(ztd::ranges::empty(truncated_utf16_string_result.output));
36 // There is still input left
37 ZTD_TEXT_ASSERT(!ztd::ranges::empty(truncated_utf16_string_result.input));
38 // We left only enough space for everything except the last '\0':
39 // check to see if that's what happened in the input
40 ZTD_TEXT_ASSERT(truncated_utf16_string_result.input[0] == '!');
41 ZTD_TEXT_ASSERT(truncated_utf16_string_result.input[0]
42 == input[input_last_exclamation_mark_index]);
43 // No copies of the input were made:
44 // points to the same data as it was given.
45 ZTD_TEXT_ASSERT(&truncated_utf16_string_result.input[0]
46 == &input[input_last_exclamation_mark_index]);
47

48 return 0;
49 }

Transcoding with Errors

Very often, text contains errors. Whether it’s being interpreted as the wrong encoding or it contains file names or
data mangled during a system crash, or it’s just plain incorrect, bad data is a firm staple and constant reality for text
processing. ztd.text offers many kinds of error handlers. They have many different behaviors, from doing nothing
and stopping the desired encoding operation, to skipping over bad text and not doing anything, to adding replacement
characters, and more.

The ztd::text::default_handler, unless configured differently, is to use replacement characters:

1.1. Quick ‘n’ Dirty Tutorial 9

ztd.text, Release 0.0.0

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <string_view>
5

6 int main(int, char*[]) {
7 constexpr const char32_t input[] = U"Ba\xD800rk!";
8 // Equivalent to: u8"Bark!"
9 constexpr const char expected_default_output[] = "Ba\xef\xbf\xbdrk!";

10

11 std::string utf8_string_with_default
12 = ztd::text::transcode(input, ztd::text::compat_utf8);
13

14 ZTD_TEXT_ASSERT(utf8_string_with_default == expected_default_output);
15

16 auto utf8_string_with_default_result
17 = ztd::text::transcode_to(input, ztd::text::compat_utf8);
18 ZTD_TEXT_ASSERT(utf8_string_with_default_result.error_code
19 == ztd::text::encoding_error::ok);
20 ZTD_TEXT_ASSERT(utf8_string_with_default_result.errors_were_handled());
21 ZTD_TEXT_ASSERT(utf8_string_with_default_result.error_count == 1);
22 ZTD_TEXT_ASSERT(
23 utf8_string_with_default_result.output == expected_default_output);
24 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf8_string_with_default_result.input));
25

26 return 0;
27 }

The ztd::text::replacement_handler explicitly inserts replacement characters where the failure occurs:

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <string_view>
5

6 int main(int, char*[]) {
7 constexpr const char32_t input[] = U"Ba\xD800rk!";
8 constexpr const char expected_replacement_output[] = "Ba\xef\xbf\xbdrk!";
9

10 std::string utf8_string_with_replacement
11 = ztd::text::transcode(input, ztd::text::utf32, ztd::text::compat_utf8,
12 ztd::text::replacement_handler);
13

14 ZTD_TEXT_ASSERT(utf8_string_with_replacement == expected_replacement_output);
15

16 auto utf8_string_with_replacement_result
17 = ztd::text::transcode_to(input, ztd::text::utf32,
18 ztd::text::compat_utf8, ztd::text::replacement_handler);
19

20 ZTD_TEXT_ASSERT(utf8_string_with_replacement_result.error_code
21 == ztd::text::encoding_error::ok);
22 ZTD_TEXT_ASSERT(utf8_string_with_replacement_result.errors_were_handled());
23 ZTD_TEXT_ASSERT(utf8_string_with_replacement_result.error_count == 1);

(continues on next page)

10 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

24 ZTD_TEXT_ASSERT(utf8_string_with_replacement_result.output
25 == expected_replacement_output);
26 ZTD_TEXT_ASSERT(
27 ztd::ranges::empty(utf8_string_with_replacement_result.input));
28

29 return 0;
30 }

To simply skip over bad input without outputting any replacement characters, use ztd::text::skip_handler:

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <string_view>
5

6 int main(int, char*[]) {
7 constexpr const char32_t input[] = U"Ba\xD800rk!";
8 constexpr const char expected_skip_output[] = "Bark!";
9

10 std::string utf8_string_with_skip = ztd::text::transcode(input,
11 ztd::text::utf32, ztd::text::compat_utf8, ztd::text::skip_handler);
12 ZTD_TEXT_ASSERT(utf8_string_with_skip == expected_skip_output);
13

14 auto utf8_string_with_skip_result = ztd::text::transcode_to(input,
15 ztd::text::utf32, ztd::text::compat_utf8, ztd::text::skip_handler);
16 ZTD_TEXT_ASSERT(utf8_string_with_skip_result.error_code
17 == ztd::text::encoding_error::ok);
18 ZTD_TEXT_ASSERT(utf8_string_with_skip_result.errors_were_handled());
19 ZTD_TEXT_ASSERT(utf8_string_with_skip_result.error_count == 1);
20 ZTD_TEXT_ASSERT(utf8_string_with_skip_result.output == expected_skip_output);
21 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf8_string_with_skip_result.input));
22

23 return 0;
24 }

To stop in the middle of the operation and return immediately, employ the ztd::text::pass_handler. This will
leave text unprocessed, but offer a chance to inspect what is left and any corrective action that might need to be taken
afterwards:

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <string_view>
5

6 int main(int, char*[]) {
7 constexpr const char32_t input[] = U"Ba\xD800rk!";
8 constexpr const char expected_pass_output[] = "Ba";
9 constexpr const char32_t expected_pass_leftover_input[] = U"\xD800rk!";

10

11 std::string utf8_string_with_pass = ztd::text::transcode(input,
12 ztd::text::utf32, ztd::text::compat_utf8, ztd::text::pass_handler);
13

(continues on next page)

1.1. Quick ‘n’ Dirty Tutorial 11

ztd.text, Release 0.0.0

(continued from previous page)

14 ZTD_TEXT_ASSERT(utf8_string_with_pass == expected_pass_output);
15

16 auto utf8_string_with_pass_result = ztd::text::transcode_to(input,
17 ztd::text::utf32, ztd::text::compat_utf8, ztd::text::pass_handler);
18

19 ZTD_TEXT_ASSERT(utf8_string_with_pass_result.error_code
20 == ztd::text::encoding_error::invalid_sequence);
21 ZTD_TEXT_ASSERT(utf8_string_with_pass_result.errors_were_handled());
22 ZTD_TEXT_ASSERT(utf8_string_with_pass_result.error_count == 1);
23 ZTD_TEXT_ASSERT(utf8_string_with_pass_result.output == expected_pass_output);
24 ZTD_TEXT_ASSERT(ztd::ranges::equal(utf8_string_with_pass_result.input,
25 std::u32string(expected_pass_leftover_input)));
26

27 return 0;
28 }

Error handlers like the ztd::text::skip_handler and ztd::text::replacement_handler (and potentially the
ztd::text::default_handler) are smart enough to not output multiple replacement characters for every single 8,
16, or 32-bit unit that contains an error, folding them down into one replacement character per distinct failure location:

1 #include <ztd/text.hpp>
2

3 #include <vector>
4 #include <list>
5 #include <deque>
6 #include <string>
7 #include <string_view>
8

9 int main(int, char*[]) {
10 // Scuffed UTF-8 input: 'C0' is not a legal sequence starter
11 // for regular, pure UTF-8
12 constexpr const char input[] = "Me\xC0\x9F\x90\xB1ow!";
13 constexpr const char32_t expected_skip_output[] = U"Meow!";
14

15 std::u32string utf32_string_with_skip = ztd::text::transcode(input,
16 ztd::text::compat_utf8, ztd::text::utf32, ztd::text::skip_handler);
17

18 ZTD_TEXT_ASSERT(utf32_string_with_skip == expected_skip_output);
19

20 auto utf32_string_with_skip_result = ztd::text::transcode_to(input,
21 ztd::text::compat_utf8, ztd::text::utf32, ztd::text::skip_handler);
22 ZTD_TEXT_ASSERT(utf32_string_with_skip_result.error_code
23 == ztd::text::encoding_error::ok);
24 ZTD_TEXT_ASSERT(utf32_string_with_skip_result.errors_were_handled());
25 ZTD_TEXT_ASSERT(utf32_string_with_skip_result.error_count == 1);
26 ZTD_TEXT_ASSERT(utf32_string_with_skip_result.output == expected_skip_output);
27 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf32_string_with_skip_result.input));
28

29 return 0;
30 }

1 #include <ztd/text.hpp>
(continues on next page)

12 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

2

3 #include <vector>
4 #include <list>
5 #include <deque>
6 #include <string>
7 #include <string_view>
8

9 int main(int, char*[]) {
10 // Scuffed UTF-8 input: 'C0' is not a legal sequence starter
11 // for regular, pure UTF-8!
12 constexpr const char input[] = "Me\xC0\x9F\x90\xB1ow!";
13 constexpr const char32_t expected_default_output[] = U"Meow!";
14

15 std::u32string utf32_string_with_default
16 = ztd::text::transcode(input, ztd::text::compat_utf8, ztd::text::utf32);
17

18 ZTD_TEXT_ASSERT(utf32_string_with_default == expected_default_output);
19

20 auto utf32_string_with_default_result = ztd::text::transcode_to(
21 input, ztd::text::compat_utf8, ztd::text::utf32);
22 ZTD_TEXT_ASSERT(utf32_string_with_default_result.error_code
23 == ztd::text::encoding_error::ok);
24 ZTD_TEXT_ASSERT(utf32_string_with_default_result.errors_were_handled());
25 ZTD_TEXT_ASSERT(utf32_string_with_default_result.error_count == 1);
26 ZTD_TEXT_ASSERT(
27 utf32_string_with_default_result.output == expected_default_output);
28 ZTD_TEXT_ASSERT(ztd::ranges::empty(utf32_string_with_default_result.input));
29

30 return 0;
31 }

1 #include <ztd/text.hpp>
2

3 #include <vector>
4 #include <list>
5 #include <deque>
6 #include <string>
7 #include <string_view>
8

9 int main(int, char*[]) {
10 // Scuffed UTF-8 input: 'C0' is not a legal sequence starter
11 // for regular, pure UTF-8
12 constexpr const char input[] = "Me\xC0\x9F\x90\xB1ow!";
13 constexpr const char32_t expected_replacement_output[] = U"Meow!";
14

15 std::u32string utf32_string_with_replacement
16 = ztd::text::transcode(input, ztd::text::compat_utf8, ztd::text::utf32,
17 ztd::text::replacement_handler);
18

19 ZTD_TEXT_ASSERT(utf32_string_with_replacement == expected_replacement_output);
20

21 auto utf32_string_with_replacement_result
(continues on next page)

1.1. Quick ‘n’ Dirty Tutorial 13

ztd.text, Release 0.0.0

(continued from previous page)

22 = ztd::text::transcode_to(input, ztd::text::compat_utf8,
23 ztd::text::utf32, ztd::text::replacement_handler);
24 ZTD_TEXT_ASSERT(utf32_string_with_replacement_result.error_code
25 == ztd::text::encoding_error::ok);
26 ZTD_TEXT_ASSERT(utf32_string_with_replacement_result.errors_were_handled());
27 ZTD_TEXT_ASSERT(utf32_string_with_replacement_result.error_count == 1);
28 ZTD_TEXT_ASSERT(utf32_string_with_replacement_result.output
29 == expected_replacement_output);
30 ZTD_TEXT_ASSERT(
31 ztd::ranges::empty(utf32_string_with_replacement_result.input));
32

33 return 0;
34 }

Compared to the ztd::text::pass_handler, which will stop at the first potential error:

1 #include <ztd/text.hpp>
2

3 #include <vector>
4 #include <list>
5 #include <deque>
6 #include <string>
7 #include <string_view>
8

9 int main(int, char*[]) {
10 // Scuffed UTF-8 input: 'C0' is not a legal sequence starter
11 // for regular, pure UTF-8
12 constexpr const char input[] = "Me\xC0\x9F\x90\xB1ow!";
13 constexpr const char32_t expected_pass_output[] = U"Me";
14 constexpr const char expected_pass_leftover_input[] = "\xC0\x9F\x90\xB1ow!";
15

16 std::u32string utf32_string_with_pass = ztd::text::transcode(input,
17 ztd::text::compat_utf8, ztd::text::utf32, ztd::text::pass_handler);
18

19 ZTD_TEXT_ASSERT(utf32_string_with_pass == expected_pass_output);
20

21 auto utf32_string_with_pass_result = ztd::text::transcode_to(input,
22 ztd::text::compat_utf8, ztd::text::utf32, ztd::text::pass_handler);
23 ZTD_TEXT_ASSERT(utf32_string_with_pass_result.error_code
24 == ztd::text::encoding_error::invalid_sequence);
25 ZTD_TEXT_ASSERT(utf32_string_with_pass_result.errors_were_handled());
26 ZTD_TEXT_ASSERT(utf32_string_with_pass_result.error_count == 1);
27 ZTD_TEXT_ASSERT(utf32_string_with_pass_result.output == expected_pass_output);
28 ZTD_TEXT_ASSERT(ztd::ranges::equal(utf32_string_with_pass_result.input,
29 std::string_view(expected_pass_leftover_input)));
30

31 return 0;
32 }

You can even write your own custom error handlers.

14 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Transcoding with Input, Output and Pivot Controls

Occasionally, you need to perform a transcoding operation that has no extension point and needs to go through an
intermediate transition phase first (like UTF-8 Intermediate UTF-32 Shift-JIS). Normally, ztd.text will create an
internal, stack-based buffer (controllable with preprocessor definitions) to use as the intermediate. But sometimes you
need to exercise control over even that, to keep memory usage predictable and stable in all situations. Enter the pivot
parameter, which a user can use to give a custom buffer (any custom range) as the intermediate data holder:

1 #include <ztd/text.hpp>
2

3 #include <string>
4 #include <iterator>
5

6 int main(int, char*[]) {
7 constexpr const char16_t u16_data[]
8 = u""
9 u""

10 u""
11 u""
12 u""
13 u"1";
14

15 // must provide all arguments to get to the "pivot" part.
16 // decode and encode states to use
17 auto utf16_decode_state = ztd::text::make_decode_state(ztd::text::utf16);
18 auto shift_jis_encode_state
19 = ztd::text::make_encode_state(ztd::text::shift_jis_x0208);
20 // the output we're going to serialize into! We're using a std::back_inserter
21 // to just fill up our desired container (in this case, a std::string)
22 std::string shift_jis_string;
23 auto output_view
24 = ztd::ranges::unbounded_view(std::back_inserter(shift_jis_string));
25 // we're going to use a static buffer, but anything
26 // would work just fine, really, as the "pivot"
27 char32_t my_intermediate_buffer[256];
28 ztd::span<char32_t> pivot(my_intermediate_buffer);
29

30 // Perform the conversion!
31 auto shift_jis_result = ztd::text::transcode_into(u16_data, ztd::text::utf16,
32 output_view, ztd::text::shift_jis_x0208, ztd::text::replacement_handler,
33 ztd::text::replacement_handler, utf16_decode_state,
34 shift_jis_encode_state, pivot);
35

36

37 // Verify everything is in a state we expect it to be in!
38 // A Shift-JIS encoded character string.
39 constexpr const char expected_shift_jis_string[]
40 = "\x82\xb1\x82\xcc\x8d\x91\x82\xcc\x97\xf0\x8e\x6a\x82\xcd\x90\xa2\x8a"
41 "\x45\x82\xaa\x82\xdc\x82\xbe\x96\xa2\x8a\xae\x90\xac\x82\xc5\x81\x41"
42 "\x90\x5f\x97\x6c\x82\xb7\x82\xe7\x82\xa2\x82\xc8\x82\xa9\x82\xc1\x82"
43 "\xbd\x82\xc6\x82\xb1\x82\xeb\x82\xa9\x82\xe7\x8e\x6e\x82\xdc\x82\xe9"
44 "\x81\x42\x8c\xbb\x8d\xdd\x82\xcc\x93\xfa\x96\x7b\x82\xcd\x81\x77\x90"
45 "\x5f\x97\x6c\x82\xcc\x8f\x5a\x82\xde\x93\x56\x8a\x45\x81\x78\x81\x77"

(continues on next page)

1.1. Quick ‘n’ Dirty Tutorial 15

ztd.text, Release 0.0.0

(continued from previous page)

46 "\x90\x6c\x8a\xd4\x82\xcc\x8f\x5a\x82\xde\x92\x6e\x8f\xe3\x81\x78\x81"
47 "\x77\x8e\x80\x8e\xd2\x82\xcc\x8f\x5a\x82\xde\x96\xbb\x8a\x45\x81\x78"
48 "\x82\xcc\x8e\x4f\x91\x77\x82\xc9\x95\xaa\x82\xa9\x82\xea\x82\xc4\x82"
49 "\xa2\x82\xe9\x82\xaf\x82\xea\x82\xc7\x81\x41\x82\xbb\x82\xcc\x8d\xa0"
50 "\x82\xcd\x82\xdc\x82\xbe\x8b\x43\x91\xcc\x82\xc6\x8c\xc5\x91\xcc\x82"
51 "\xb7\x82\xe7\x95\xaa\x82\xa9\x82\xea\x82\xc4\x82\xa2\x82\xc8\x82\xad"
52 "\x82\xc4\x81\x41\x83\x4a\x83\x49\x83\x58\x8f\xf3\x91\xd4\x82\xcc\x90"
53 "\xa2\x8a\x45\x82\xaa\x82\xc7\x82\xb1\x82\xdc\x82\xc5\x82\xe0\x82\xc7"
54 "\x82\xb1\x82\xdc\x82\xc5\x82\xe0\x8d\x4c\x82\xaa\x82\xc1\x82\xc4\x82"
55 "\xa2\x82\xe9\x82\xbe\x82\xaf\x82\xbe\x82\xc1\x82\xbd\x81\x42\x82\xbb"
56 "\x82\xea\x82\xa9\x82\xe7\x92\xb7\x81\x5b\x81\x5b\x82\xa2\x92\xb7\x81"
57 "\x5b\x81\x5b\x81\x5b\x82\xa2\x8e\x9e\x8a\xd4\x82\xaa\x8c\x6f\x82\xc1"
58 "\x82\xbd\x82\xa0\x82\xe9\x93\xfa\x81\x41\x82\xd3\x82\xa2\x82\xc9\x93"
59 "\x56\x82\xc6\x92\x6e\x82\xaa\x95\xaa\x82\xa9\x82\xea\x82\xbd\x81\x42"
60 "\x82\xb7\x82\xe9\x82\xc6\x81\x41\x82\xc7\x82\xb1\x82\xa9\x82\xe7\x82"
61 "\xc6\x82\xe0\x82\xc8\x82\xad\x93\x56\x82\xc9\x31\x90\x6c\x82\xcc\x90"
62 "\x5f\x97\x6c\x82\xaa\x81\x41\x82\xc8\x82\xe8\x82\xc8\x82\xe8\x82\xc6"
63 "\x90\xb6\x82\xdc\x82\xea\x82\xc4\x82\xab\x82\xbd\x81\x42";
64

65 ZTD_TEXT_ASSERT(shift_jis_result.error_code == ztd::text::encoding_error::ok);
66 ZTD_TEXT_ASSERT(!shift_jis_result.errors_were_handled());
67 ZTD_TEXT_ASSERT(
68 shift_jis_result.pivot_error_code == ztd::text::encoding_error::ok);
69 ZTD_TEXT_ASSERT(shift_jis_result.pivot_error_count == 0);
70 ZTD_TEXT_ASSERT(ztd::ranges::empty(shift_jis_result.input));
71 ZTD_TEXT_ASSERT(shift_jis_string == expected_shift_jis_string);
72 return 0;
73 }

Here, we use an exceptionally small buffer to keep memory usage down. Note that the buffer should
be at least as large as ztd::text::max_code_points_v<FromEncoding> (FromEncoding in this case
being the ztd::text::compat_utf8 encoding) so that no "insufficient output size" errors oc-
cur during translation. (For ztd::text::encode operations, the buffer should be at least as large as
ztd::text::max_code_units_v<FromEncoding>) If the pivot buffer is too small this can produce unpredictable
failures and unexpected behavior from unanticipated errors, so make sure to always provide a suitably-sized pivot buffer!
Or, alternatively, just let the implementation use its defaults, which are (generally) tuned to work out well enough for
most conversion routines and platforms.

1.1.4 Encoding & Decoding

Encoding and decoding look identical to Transcoding, just using the functions ztd::text::decode and ztd::text::encode
functions. ztd::text::decode will always produce a sequence of the encoding’s code point type
(ztd::text::code_point_t<some_encoding_type>). ztd::text::encode will always produce a sequence of the en-
coding’s code unit type (ztd::text::code_unit_t<some_encoding_type>), and the lower-level functions ending in _to
and _into will produce a ztd::text::encode_result (for encoding) or ztd::text::decode_result (for decoding):

1 #include <ztd/text.hpp>
2

3 #include <string>
4

5 int main(int, char*[]) {
(continues on next page)

16 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

6 const char input[]
7 = "\xbe\xc8\xb3\xe7\x2c\x20\xbf\xc0\xb4\xc3\xc0\xba\x20\xc1\xc1\xc0\xba"
8 "\x20\xb3\xaf\xc0\xcc\xbf\xa1\xbf\xe4\x21";
9

10 // Decode, with result to check!
11 auto korean_decoded_output_result
12 = ztd::text::decode_to(input, ztd::text::euc_kr_uhc);
13 ZTD_TEXT_ASSERT(korean_decoded_output_result.error_code
14 == ztd::text::encoding_error::ok);
15 ZTD_TEXT_ASSERT(!korean_decoded_output_result.errors_were_handled());
16 ZTD_TEXT_ASSERT(ztd::ranges::empty(korean_decoded_output_result.input));
17 const std::u32string& korean_decoded_output
18 = korean_decoded_output_result.output;
19

20 // Take decoded Unicode code points and encode it into UTF-8
21 auto korean_utf8_output_result
22 = ztd::text::encode_to(korean_decoded_output, ztd::text::compat_utf8);
23 ZTD_TEXT_ASSERT(
24 korean_utf8_output_result.error_code == ztd::text::encoding_error::ok);
25 ZTD_TEXT_ASSERT(!korean_utf8_output_result.errors_were_handled());
26 ZTD_TEXT_ASSERT(ztd::ranges::empty(korean_utf8_output_result.input));
27 const std::string& korean_utf8_output = korean_utf8_output_result.output;
28 // verify that what we got out in UTF-8 would be the same if we converted
29 // it back to EUC-KR.
30 ZTD_TEXT_ASSERT(ztd::ranges::equal(std::string_view(input),
31 ztd::text::transcode(korean_utf8_output, ztd::text::compat_utf8,
32 ztd::text::euc_kr_uhc, ztd::text::pass_handler)));
33 // A korean greeting!
34 std::cout.write(korean_utf8_output.data(), korean_utf8_output.size());
35 std::cout << std::endl;
36

37 return 0;
38 }

Encode and decode operations are part of each encoding, represented by its encoding type. Every encoding object
natively understands how to go from a sequence of its encoded data to its decoded data, and vice-versa, with the
encode_one and decode_one functions. One should not call these functions directly, however, and instead used
the above-provided functions. Because decode and encode operations do not feature intermediate steps, there is no
ztd::text::pivot<. . .> for these functions.

1.1.5 Counting

Counting is done using the ztd::text::count_as_decoded, ztd::text::count_as_encoded, and
ztd::text::count_as_transcoded. As the names imply, it yields the number of code points or code units that will result
from an attempted encode, decode, or transcode operation in a sequence of text. It will return a ztd::text::count_result
detailing that information:

1 #include <ztd/text.hpp>
2

3 #include <iostream>
4

(continues on next page)

1.1. Quick ‘n’ Dirty Tutorial 17

ztd.text, Release 0.0.0

(continued from previous page)

5 int main(int, char*[]) {
6 const char input[]
7 = " OSSL s s RFC ss "
8 "-cqj0qgheba6zgdehhb85bfc31d5m2evf4423k0a7nd6abq3flcampfa17ac5froq64c0"
9 "a2a7nbcyjnb1b7yp96t0e31nkf95i";

10 std::vector<char32_t> output(256);
11 auto counting_result
12 = ztd::text::count_as_decoded(input, ztd::text::punycode);
13 ZTD_TEXT_ASSERT(counting_result.error_code == ztd::text::encoding_error::ok);
14 ZTD_TEXT_ASSERT(!counting_result.errors_were_handled());
15 if (counting_result.count > 256) {
16 std::cerr << "The input punycode exceeeds the IDNA limited size buffer: "
17 "change parameters to allocate a larger one!"
18 << std::endl;
19 return 1;
20 }
21 output.resize(counting_result.count);
22 auto decoding_result = ztd::text::decode_into_raw(
23 input, ztd::text::punycode, ztd::span<char32_t>(output));
24 std::size_t decoding_result_count
25 = decoding_result.output.data() - output.data();
26 ZTD_TEXT_ASSERT(decoding_result.error_code == ztd::text::encoding_error::ok);
27 ZTD_TEXT_ASSERT(!decoding_result.errors_were_handled());
28 ZTD_TEXT_ASSERT(ztd::ranges::empty(decoding_result.input));
29 ZTD_TEXT_ASSERT(decoding_result_count == counting_result.count);
30

31 // Show decoded punycode (translate to UTF-8 to print to console)
32 std::cout << "Decoded punycode code points:\n\t";
33 for (const auto& code_point : output) {
34 std::cout << std::hex << std::showbase
35 << static_cast<uint_least32_t>(code_point) << " ";
36 }
37 std::cout << "\n" << std::endl;
38

39 std::cout << "Decoded punycode as UTF-8:\n\t";
40 ztd::text::encode_view<ztd::text::utf8_t> print_view(
41 std::u32string_view(output.data(), decoding_result_count));
42 for (auto u8_code_unit : print_view) {
43 std::cout.write(reinterpret_cast<const char*>(&u8_code_unit), 1);
44 }
45 std::cout << std::endl;
46

47 return 0;
48 }

Getting counts is essential to being able to size allocated buffers for exactly what is necessary, or make use of small
buffer optimizations by checking sizes before potentially spilling over into larger allocations.

18 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.1.6 Validation

Validation is checking whether or not the input sequence can be encoded, decoded, or transcoded to by (and
to) the given encoding. It works through the ztd::text::validate_decodable, ztd::text::validate_encodable, and
ztd::text::validate_transcodable functions.

1 #include <ztd/text.hpp>
2

3 #include <string_view>
4

5 int main(int, char*[]) {
6 constexpr const std::u32string_view input = U"meowmoew!";
7

8 // At compile-time: returns a structure with (explicit) operator bool
9 // to allow it to be used with ! and if() statements

10 static_assert(!ztd::text::validate_encodable_as(input, ztd::text::ascii),
11 "Unfortunately, ASCII does not support emoji.");
12

13 // At run-time: returns a structure
14 auto validate_result
15 = ztd::text::validate_encodable_as(input, ztd::text::ascii);
16

17 // Check if the result is valid (should not be valid).
18 if (validate_result) {
19 // Everyyhing was verified (not expected!)
20 std::cerr << "Unexpectedly, the input text was all valid ASCII."
21 << std::endl;
22 return 1;
23 }
24

25 // Otherwise, everything was not verified (expected!)
26 std::cout << "As expected, the input text was not valid ASCII."
27 << "\n"
28 << "Here are the unicode hex values of the unvalidated UTF-32 code "
29 "points:\n\t";
30 // use the structure to know where we left off.
31 std::u32string_view unused_input(
32 validate_result.input.data(), validate_result.input.size());
33 for (const auto& u32_codepoint : unused_input) {
34 std::cout << "0x" << std::hex
35 << static_cast<uint_least32_t>(u32_codepoint);
36 if (&u32_codepoint != &unused_input.back()) {
37 std::cout << " ";
38 }
39 }
40 std::cout << std::endl;
41 return 0;
42 }

1.1. Quick ‘n’ Dirty Tutorial 19

ztd.text, Release 0.0.0

1.1.7 There’s More!

There is more you can do with this library, from authoring your own encoding objects/types to taking control of the
performance of conversions. More will be added to this Getting Started as time goes on, but if you have any inkling
of something that should work, give it a try! If it fails in a way you don’t think is helpful, please let us known through
any of our available communication channels so we can assist you!

1.2 Users in the Wild

None have come and told us about their usage, yet!

If you use the library to any success, please do not hesitate to reach out to opensource@soasis.org!

1.3 Glossary of Terms & Definitions

Occasionally, we may need to use precise language to describe what we want. This contains a list of definitions that can
be linked to from the documentation to help describe key concepts that are useful for the explication of the concepts
and ideas found in this documentation.

character
This word carries with it 2 meanings, thanks to C-style languages and their predecessors. Sometimes, chars,
wchar_ts, char8_ts, and similar are called “narrow character”s, “wide character”s, “UTF-8 characters” and
similar. This is the result of a poor legacy in software and hardware nomenclature. These are not character types,
but rather types that _may_ represent the abstract notion of a character but frequently, and often, do not. After
all, you wouldn’t be here reading this if it did and non-English wasn’t busted in your application, now would you?

The other definition is just an abstract unit of information in human languages and writing. The closest approxi-
mation that Unicode has for the human language/writing character is a Grapheme Cluster.

code point
A single unit of decoded information. Most typically associated with unicode code points, but they can be other
things such as unicode scalar values or even a 13-bit value.

Note that a single code point does not imply a “character”, as that is a complex entity in human language and
writing that cannot be mapped easily to a single unit of decoded information.

code unit
A single unit of encoded information. This is typically, 8-, 16-, or 32-bit entities arranged in some sequential
fashion that, when read or treated in a certain manner, end up composing higher-level units which make up
readable text. Much of the world’s most useful encodings that encode text use multiple code units in sequence
to give a specific meaning to something, which makes most encodings variable length encodings.

decode
Converting from a stream of input, typically code units, to a stream of output, typically code points. The output
is generally in a form that is more widely consumable or easier to process than when it started. Frequently, this
library expects and works with the goal that any decoding process is producing unicode code points or unicode
scalar values from some set of code units.

encode
Converting from a stream of input, typically code points, to a stream of output, typically code units. The output
may be less suitable for general interchange or consumption, or is in a specific interchange format for the interop-
eration. Frequently, this library expects and works with the goal that any decoding process is producing unicode
code points or unicode scalar values from some set of code units.

20 Chapter 1. Who Is This Library For?

mailto:opensource@soasis.org

ztd.text, Release 0.0.0

encoding
A set of functionality that includes an encode process or a decode process (or both). The encode process takes
in a stream of code points and puts out a stream of code units. The decode process takes in a stream of code
units and puts out a stream of code points. In a concrete sense, there are a number of additional operations an
encoding needs: see the Lucky 7 design concept.

execution encoding
The locale-based encoding related to “multibyte characters” (C and C++ magic words) processed during program
evaluation/execution. It is directly related to the std::set_locale(LC_CTYPE, ...) calls. Note that this is
different from literal encoding, which is the encoding of string literals. The two may not be (and many times,
are not) the same.

grapheme cluster
The closest the Unicode Standard gets to recognizing a human-readable and writable character, grapheme clus-
ter’s are arbitrarily sized bundles of unicode code points that compose of a single concept that might match what
a “character” is in any given human language.

indivisible unit of work
A single unit of transcoding effort when going from one encoding to another that consumes the smallest possible
input to produce an output, to change the state, to both produce an output and change the state, or to produce an
error. Unlike unicode code points or unicode scalar values, indivisible units of work do not have a fixed width or
fixed definition and are dependent on the two encodings involved in the transcoding operation being performed.

injective
An operation which can map all input information to an output. This is used for this library, particularly, to
determine whether an operation is lossy (loses information) or not. For example, UTF-8 to UTF-32 is an injective
operation because the values in a UTF-8 encoding are preserved in a UTF-32 encoding. UTF-16 to GB18030 is
also an injective operation. But, converting something like Latin-1 to ASCII is a lossy operation, or UTF-8 to
SHIFT-JIS.

literal encoding
The encoding of string literals ("") during constant evaluation. This is usually controlled by command line
arguments (MSVC and GCC) or fixed during compilation (Clang as UTF-8, though that may change). Typically
defaults to the system’s “locale” setting.

mojibake
(Japanese: Pronunciation: [modibake] “unintelligible sequence of characters”.) From Japanese (moji), meaning
“character” and (bake), meaning change, is an occurrence of incorrect unreadable characters displayed when
computer software fails to render text correctly to its associated character encoding.

transcode
Converting from one form of encoded information to another form of encoded information. In the context of this
library, it means going from an input in one encoding’s code units to an output of another encoding’s code units.
Typically, this is done by invoking the decode of the original encoding to reach a common interchange format
(such as unicode code points) before taking that intermediate output and piping it through the encode step of
the other encoding. Different transcode operations may not need to go through a common interchange, and may
transcode “directly”, as a way to improve space utilization, time spent, or both.

unicode code point
A single unit of decoded information for Unicode. It represents the smallest, non-encoded, and indivisible piece
of information that can be used to talk about higher level algorithms, properties, and more from the Unicode
Standard.

A unicode code point has been reserved to take at most 21 bits of space to identify itself.

A single unicode code point is NOT equivalent to a character, and multiple of them can be put together or taken
apart and still have their sequence form a “character”. For a more holistic, human-like interpretation of code
points or other data, see grapheme clusters.

1.3. Glossary of Terms & Definitions 21

https://reviews.llvm.org/D88741#2352203

ztd.text, Release 0.0.0

unicode scalar value
A single unit of decoded information for Unicode. It’s definition is identical to that of unicode code points, with
the additional constraint that every unicode scalar value may not be a “Surrogate Value”. Surrogate values are
non-characters used exclusively for the purpose of encoding and decoding specific sequences of code units, and
therefore carry no useful meaning in general interchange. They may appear in text streams in certain encodings:
see Wobbly Transformation Format-8 (WTF-8) for an example.

wide execution encoding
The locale-based encoding related to “wide characters” (C and C++ magic words) processing during program
evaluation/execution. It is directly related to the std::set_locale(LC_CTYPE, ...) calls. Note that this is
different from the wide literal encoding, which is the encoding of wide string literals. The two may not be (and
many times, are not) the same. Nominally, wide string literals are usually not like this, but there are a handful of
compilers were they use neither UTF-16 or UTF-32 as the wide execution encoding, and instead use, for example,
EUC-TW.

wide literal encoding
The encoding of wide string literals (L"") during constant evaluation. This is usually controlled by command line
arguments (GCC) or fixed during compilation (Clang as UTF-32, though that may change). Typically defaults
to the system’s “locale” setting.

1.4 Design Goals and Philosophy

The goal of this library are to

• enable people to write new code that can properly handle encoded information, specifically text;

• offer them effective means to convert that information in various ways;

• impose no run-time overhead compared to writing the code by hand; and

• statically track encodings, where possible, to make lossless or bad conversions a compile time error rather than
a runtime problem;

These four goals inform the design of the library to its deepest levels and helps us go through the following important
tenents:

1.4.1 First Principles - “Lucky 7” and a Liberation-First Design

One of the core premises of this library is that any text in one encoding can be converted to another, without having to
know anything about external encodings. This is how the library achieves infinite extensibility! We start by noting that
almost any encoding conversion can be done so long as there is an intermediary that exists between the source and the
destination. For encoded text, this is the line between code units (code_unit for code) and code points (code_point
for code).

Code units are single elements of a linear sequence of encoded information. That could be a sequence of bytes, a
sequence of 16-bit numbers, and more. A sequence of code units is typically specific to the encoding it has and is
generally impossible to reason about in a general or generic sense.

Code points are single elements of a linear sequence of information that have been decoded. They are far more
accessible because they are generally an agreed upon interchange point that most others can access and reason about.

We leverage that, for text, **Unicode Code Points** are an agreed upon interchange format, giving rise to this general
framework for encoding and decoding text:

The way to tap into this concept is to create an object that models an encoding concept, which is commonly referred to
as the “Lucky 7” concept. The concept leverages a technique that has been used at least since the early days of Bruno
Haibile’s and Daiko Ueno’s iconv library, but formalizes it for interacting between 2 encodings.

22 Chapter 1. Who Is This Library For?

https://en.wikipedia.org/wiki/Extended_Unix_Code#EUC-TW
https://reviews.llvm.org/D88741#2352203
https://en.wikipedia.org/wiki/Unicode#Code_point_planes_and_blocks

ztd.text, Release 0.0.0

Fig. 1: The generic pathway from one encoding to another for most (all?) text Encodings.

1.4. Design Goals and Philosophy 23

ztd.text, Release 0.0.0

We call this concept the Lucky 7.

Lucky 7

Lucky 7 is a conceptual idea a single encoding object is all you need to write to fulfill your end of the encoding bargain.
It is called the Lucky 7 because only 7 things are required from you, as the author of the encoding object, to get started:

• 3 type definitions (code_point, code_unit, state)

• 2 static member variables (max_code_points, max_code_units)

• 2 functions (encode_one, decode_one)

1 #include <cstddef>
2 #include
3

4 struct empty_struct {};
5

6 struct utf_ebcdic {
7 // (1)
8 using code_unit = char;
9 // (2)

10 using code_point = char32_t;
11 // (3)
12 using state = empty_struct;
13

14 // (4)
15 static constexpr inline std::size_t max_code_points = 1;
16 // (5)
17 static constexpr inline std::size_t max_code_units = 6;
18

19 // (6)
20 ue_encode_result encode_one(
21 ztd::span<const code_point> input,
22 ztd::span<code_unit> output,
23 state& current,
24 ue_encode_error_handler error_handler
25);
26

27 // (7)
28 ue_decode_result decode_one(
29 ztd::span<const code_unit> input,
30 ztd::span<code_point> output,
31 state& current,
32 ue_decode_error_handler error_handler
33);
34 };

There are some supporting structures here that we will explain one by one, but this is the anatomy of a simple encoding
object that you and others can define to do this job. This anatomy explicitly enables some basic work:

• encoding a single indivisible unit of work from code points to code units

• decoding a single indivisible unit of work from code units to code points

• transcoding a single indivisible unit of work from the source encoding’s code units to the destination encoding’s
code code units, if they share a common code point type.

24 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

From these 3 operations above, everything else on this library can be built.

Breaking it Down

The first three typedefs are what let internal and external machinery know what kind of values you expect out of the
ranges that go into the decode_one and encode_one function calls:

• code_unit - the input for decoding (decode_one) operations and the output for encode operations.

• code_point - the input for encode operations and the output for decoding (decode_one) operations.

char is the code unit type that the ranges work with for incoming and outgoing encoded data. char32_t is the code
point type that the ranges use for incoming and outgoing decoded data. Given those, that gives us the ability to define
the result types we will be working with.

Result Types

Result types are specific structs in the library that mark encode and decode operations. They can be used by composing
with the templated type ztd::text::decode_result and ztd::text::encode_result.

1 #include <ztd/text/encode_result.hpp>
2 #include <ztd/text/decode_result.hpp>
3

4 using ue_decode_result = ztd::text::decode_result<
5 ztd::span<const char>,
6 ztd::span<char32_t>,
7 empty_struct
8 >;
9

10 using ue_encode_result = ztd::text::encode_result<
11 ztd::span<const char32_t>,
12 ztd::span<char>,
13 empty_struct
14 >;

These result structures are returned from the lowest level encode and decode operations. They contain:

• An input member, which is the range that is passed into the decode_one and encode_one functions;

• An output member;

• A state member, which is a reference to the state that was passed in to the decode_one or encode_one
functions;

• An error_code member, which is an enumeration value from ztd::text::encoding_error; and

• An error_count member, which is an unsigned integral (std::size_t) value that says whether or not the
given error_handler was invoked and how many times

• An errors_were_handled() member function, which returns a boolean value indicating whether
error_count is greater than 0.

These variables can be used to query what exactly happened during the operation (error_code and error_count),
inspect any state passed into encodings (not used for an encoding such as utf_ebcdic), and how much input and output
has been read/what is left (by checking the input and output ranges whose .begin() value has been incremented
compared to the input values). Understanding the result types now, we move to the error handler:

1.4. Design Goals and Philosophy 25

ztd.text, Release 0.0.0

Error Handlers

The only other thing we need is the error handler, now. Generally, this is a template argument, but for the sake of
illustration we use a concrete type here:

1 #include <functional>
2

3 using ue_decode_error_handler = std::function<
4 ue_decode_result(
5 const utf_ebcdic&,
6 ue_decode_result,
7 ztd::span<char>,
8 ztd::span<char32_t>
9)

10 >;
11

12 using ue_encode_error_handler = std::function<
13 ue_encode_result(
14 const utf_ebcdic&,
15 ue_encode_result,
16 ztd::span<char32_t>,
17 ztd::span<char>
18)
19 >;

The error handlers use a result-in, result-out design. The parameters given are:

0. The encoding which triggered the error. This allows you to access any information about the encoding object
type or any values stored on the encoding object itself.

1. The result object. This object has the error_code member set to what went wrong (see
ztd::text::encoding_error), and any other changes made to the input or output during the operation.

2. A contiguous range (ztd::span) of code_units or code_points that were already read by the algorithm. This
is useful for when the input range uses input iterators, which sometimes cannot be “rolled back” after something
is read (e.g., consider std::istream_iterator).

3. A contiguous range (ztd::span) of code_units or code_points that were already read by the algorithm.
This is useful for when the output range uses output iterators, which sometimes cannot be “rolled back” after
something is written (e.g., consider std::ostream_iterator).

It returns the same type as the result object. Within this function, anyone can perform any modifications they like
to the type, before returning it. This is an incredibly useful behavior that comes in handy for defining custom error
handling behaviors, as shown in the Error Handling Design section. For example, this allows us to do things like insert
REPLACEMENT_CHARACTER \uFFFD () into a encoding through the ztd::text::replacement_handler_t or en-
able speedy encoding for pre-validated text using ztd::text::assume_valid_handler. When writing your encode_one
or decode_one function, it is your responsibility to invoke the error handler (or not, depending on the value of
ztd::text::is_ignorable_error_handler).

26 Chapter 1. Who Is This Library For?

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/iterator/ostream_iterator

ztd.text, Release 0.0.0

Liberation Achieved

If you achieve all these things, then we can guarantee that you can implement all of the desired functionality of an
encoding library. This is the core design that underpins this whole library, and how it frees both Library Developers
from needing to manically provide every possible encoding to end-users, and end-users from having to beg library
developers to add support for a particular encoding.

There is more depth one can add to an encoding object, but this is the base, required set of things to know and handle
when it comes to working with ztd.text. You can build quite a complex set of features from this functionality, and we
encourage you to keep reading through more of the design documentation to get an understanding for how this works!

1.4.2 Bulk vs. Single Conversions

There is some wonder as to whether it is prudent for the Lucky 7 to be based on bulk conversions rather than the
indivisible unit of work it is based on right now. In general, if you have either a bulk or a single conversion, you can go
from one to the other. However, while going from a single indivisible unit of work to a bulk conversion by looping is
a sound operation, trying to back-engineer a single indivisible unit of work from only a bulk conversion is not only an
entirely unsound operation (it does not generalize to all cases), it is also has horrible performance unless intermediate
buffers or allocations are deployed (and even then, still runs into soundness issues). Briefly:

Single Conversions

Single conversions are, effectively, doing “one unit of work” at a time. Whether converting Unicode one code point at a
time or making iterators/views to go over a range of UTF-8 one bundle of non-error code units at a time, the implication
here is that it uses minimal memory while guaranteeing that forward progress is made/work is done. It is absolutely
not the most performant way of encoding, but it makes all other operations possible out of the composition of this
single unit of work, so there’s that. If a single conversion is the only thing you have, you can typically build up the bulk
conversion from it.

In the opposite case, where only a bulk conversion API is available, single conversion API may still be implemented.
Just take a bulk API, break the input off into a subrange of size 1 from the beginning of the input. Then, call the bulk

1.4. Design Goals and Philosophy 27

https://www.youtube.com/watch?v=w4qYf2pvPg4&t=2535

ztd.text, Release 0.0.0

API. If it succeeds, that is all that needs to be done. If not, take the subrange and make it a subrange of size 2 from
the start of the input. Keep looping up until the bulk API successfully converts that sub-chunk of input, or until input
exhaustion. There are, unfortunately, several problems with this methodology.

• It is horrifically inefficient. It is inadvisable to do this, feature set is literally the only goal of a given API.

• It is unsound, especially in the presence of optimizations. Consider a valid UTF-8 string consisting of 3 bytes:
E2 81 87. If ztd::text::assume_valid_handler is used, or any similar “assume validitity” flag is set, then when
the input is shortened to a length of 1, it will assume the 3-part UTF-8 character is actually a single, valid UTF-8
character. This will propagate through any system where that faux-“single” conversion API based off this bulk
conversion will present an invalid single UTF-8 byte as a valid code point.

The above is just a few ways a bulk-only conversion that tries to simulate a single conversion API can go wrong.
Pressuring a user to provide a single conversion first, and then a bulk conversion, will provide far better performance
metrics and safety. For this library, we focus on providing a Lucky 7 that focuses on the single case and then allows the
user to extrapolate outside of that.

These performance metrics are documented in the benchmarks of internal routines for ztd.text and ztd.cuneicode, where
there is a special category of cuneicode using SIMD optimizations that then deploys the “single from bulk” conversion
talked about below.

Bulk Conversions

Bulk conversions are a way of converting as much input as possible to fill up as much output as possible. The only
stopping conditions for bulk conversions are exhausted input (success), not enough room in the output, an illegal input
sequence, or an incomplete sequence (but only at the very end of the input when the input is exhausted). Bulk con-
versions open the door to using Single Instruction Multiple Data (SIMD) CPU instructions, GPU processing, parallel
processing, and more, to convert large regions of text at a time.

More notably, given a stable single conversion function, running that conversion in a loop would produce the same
effect, but may be slower due to various reasons (less able to optimize the loop, cannot be easily restructured to use
SIMD, and more). Bulk conversions get around that by stating up-front they will process as much data as possible. A
bulk conversion, derived from a properly-behaving conversion that works solely on a single indivisible unit of work,
can not malfunction.

1.4.3 Lost Information

One of the biggest problems facing text processing in programming languages today is the loss of information as its
carried through any given system. In C and C++, this comes in the form of all strings - especially multibyte strings -
being given the same type. For example:

1 void read_name(const char* name) {
2 // (1)
3 }

As the maintainer of code inside of the function read_name, what is the encoding of “name” at (1)? What is its
normalization form? What system did it originate from? The function written in C++ form offers very little benefit
either:

1 void read_name(std::string_view name) {
2 // (1)
3 }

Even here, we’ve only made marginal improvements. We know the string is stored in some heap by the default allocator,
we have the size of the string, but that only tells us how many char units are stored, not how many conceptual, human-

28 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

readable characters there are or any other pertinent information. Is this information encoded? Is it UTF-8? Maybe it’s
EBCDIC Code Page 833. Maybe it’s UTF-7-IMAP. You don’t know, and by the time you start inspecting or poking
at the individual char code units, who knows what can happen? To make matters worse, even C++ and its Standard
Library have poor support for encoding/decoding, let alone Unicode in general. These problems have been explained
in quite a lot of detail up to this point, but the pitfalls are many:

. . . Where are potential problems?

All over the place? Let’s see. . .

—R. Martinho Fernandes, last edited April 20th, 2018

Some proponents say that if we just change everything to mean “UTF-8” (const char*, std::string, and more), then we
can just assume UTF-8 throughout the entire application and only accept UTF-8 and that will end all our encoding
problems. Typically, these people read UTF-8 Everywhere and then just go all-in on the philosophy, all the time.

“UTF-8 Everywhere!!”

There are many in the programming space that believe that just switching everything to UTF-8 everywhere will solve
the problem. This is, unfortunately, greatly inadequate as a solution. For those who actually read the entire UTF-8
Everywhere manifesto in its fullness, they will come across this FAQ entry:

Q: Why not just let any programmer use their favorite encoding internally, as long as they knows
how to use it?

A: We have nothing against correct usage of any encoding. However, it becomes a problem when the same
type, such as std::string, means different things in different contexts. While it is ‘ANSI codepage’ for some,
for others, it means ‘this code is broken and does not support non-English text’. In our programs, it means
Unicode-aware UTF-8 string. This diversity is a source of many bugs and much misery. . . .

—FAQ Entry #6

The core problem with the “std::string is always UTF-8” decision (even when they are as big as Google, Apple,
Facebook, or Microsoft and own everything from the data center to the browser you work with) is that they live on a
planet with other people who do not share the same sweeping generalizations about their application environments. Nor
have they invoked the ability to, magically, rewrite everyone’s code or the data that’s been put out by these programs in
the last 50 or 60 years. This results in a gratuitous amount of replacement characters or Mojibake when things do not
encode or decode properly:

1.4. Design Goals and Philosophy 29

https://stackoverflow.com/a/17106065
https://utf8everywhere.org/
https://utf8everywhere.org/#faq.liberal

ztd.text, Release 0.0.0

There is a distinct problem that human beings are so used to computers failing them with encoding that they know how
to recognize the mistranslated text:

We get so good at it that we can even recognize the bad text . There’s a wiki for it too. It used to be
a lot worse. UTF-8 definitely helps a whole lot.

—Elias Daler

So, what do we do from here?

Fighting Code Rot

We need ways to fight bit rot and issues of function invariants – like expected encoding on string objects – from infesting
code. While we can’t rewrite every function declaration or wrap every function declaration, one of the core mechanisms
this library provides is a way of tracking and tagging this kind of invariant information, particularly at compile time.

We know we can’t solve interchange on a global level (e.g., demanding everyone use UTF-8) because, at some point,
there is always going to be some small holdout of legacy data that has not yet been fixed or ported. The start of solving
this is by having views and containers that keep encoding information with them after they are first constructed. This
makes it possible to not “lose” that information as it flows through your program:

1 using utf8_view = ztd::text::decode_view<ztd::text::utf8>;
2

(continues on next page)

30 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

3 void read_name(utf8_view name) {
4 // (1)
5 }

Now, we have an explicit decoding view into a sequence of UTF-8 code units, that produces unicode_code_points
that we can inspect and work with. This is much better, as it uses C++’s strong typing mechanisms to give us a useful
view. This means that not only does the person outside of the read_name function understand that the function expects
some UTF-8 encoded text, but the person inside the function knows that they are working with UTF-8 encoded text.
This solves both ends of the user and maintainer divide.

Of course, sometimes this is not always possible. ABI stability mandates some functions can’t have their signatures
change. Other times, you can’t modify the signature of functions you don’t own. This is still helpful in this case, as you
can, at the nearest available point inside the function or outside of it, apply these transformations:

1 void read_name(const char* untagged_name) {
2 using utf8_view = ztd::text::decode_view<
3 ztd::text::compat_utf8, // use "char" as the code unit type
4 std::string_view // explicitly use this view type
5 >;
6 // constructs a std::string_view and
7 // stores it in the proper place
8 utf8_view name(untagged_name);
9 // use it...

10 }

Because the range and container types are templated on not only encoding, but the underlying storage type, you can
wrap up both parameter and return values. You can also access the underlying std::string_view using .base(), so
it remains easy to interop and work with pre-existing systems using newer, more explicit types. Other ranges become
possible, including, say, the __gnu_cxx::rope class that is part of the GCC Extensions Library. It genuinely doesn’t
matter what you pick: we will wrap it up and present the proper interface to you. This also follows UTF-8 Everywhere’s
requirements for what it would want out of a C++ Library that does text Correctly™:

If you design a library that accepts strings, the simple, standard and lightweight std::string would do just
fine. On the contrary, it would be a mistake to reinvent a new string class and force everyone through
your peculiar interface. Of course, if one needs more than just passing strings around, he should then use
appropriate text processing tools. However, such tools are better to be independent of the storage class
used, in the spirit of the container/algorithm separation in the STL.

—UTF-8 Everywhere, FAQ Entry #19

Rather than create new std::string or std::string_view types, we simply wrap existing storage interfaces and
provide specific views or operations on those things. This alleviates the burden of having to reinvent things that already
work fine for byte-oriented interfaces, and helps programmers control (and prevent) bugs. They also get to communicate
their intent in their APIs if they so desire (“This API takes a std::string_view, but with the expectation that it’s going
to be decoded as utf8”). The wrapped type will always be available by calling .base(), which means a developer can
drop down to the level they think is appropriate when they want it (with the explicit acknowledgement they’re going to
be ruining things).

1.4. Design Goals and Philosophy 31

https://gcc.gnu.org/onlinedocs/gcc-10.2.0/libstdc++/api/a08538.html
https://utf8everywhere.org/#faq.ood

ztd.text, Release 0.0.0

1.4.4 Error Handling

Text is notorious for being a constant and consistent malformed source of input. From intermediate services mangling
encodings and producing Mojibake to bungled normalization and bad programs not understanding even the slightest
hint of code beyond ASCII, there is a lot of text data that is strictly bad for any program to consume.

When interfacing with range types such as ztd::text::decode_view, functions like ztd::text::transcode, and individual
.encode_one or .decode_one calls on encoding objects like ztd::text::utf8, you can:

• give an error handler type as a template parameter and as part of the constructor; or,

• pass it in as a normal argument to the function to be used.

They can change the conversion and other operations happen works. Consider, for example, this piece of code which
translates from Korean UTF-8 to ASCII:

1 #include <ztd/text/transcode.hpp>
2

3 #include <iostream>
4

5 int main(int, char*[]) {
6 // (1)
7 std::string my_ascii_string = ztd::text::transcode(
8 // input
9 u8"",

10 // from this encoding
11 ztd::text::utf8,
12 // to this encoding
13 ztd::text::ascii);
14

15 std::cout << my_ascii_string << std::endl;
16

17 return 0;
18 }

Clearly, the Korean characters present in the UTF-8 string just cannot fit in a strict, 7-bit ASCII encoding. What,
then, becomes the printed output from std::cout at // (2)? The answer is two ASCII question marks, ??. The
ztd::text::replacement_handler_t object passed in at // (1) substitutes replacement characters (zero or more) into the
output for any failed operation. There are multiple kinds of error handlers with varying behaviors:

• replacement_handler_t, which inserts a substitution character specified by either the encoding object or some
form using the default replacement character "U+FFFD" as well as skip over invalid input (either 1 input unit or
as dictated by ztd::text::skip_input_error);

• skip_handler_t, which skips over invalid input (and does not reflect it in the output) by either 1 input unit or as
dictated by ztd::text::skip_input_error;

• pass_handler, which simply returns the error result as it and, if there is an error, halts higher-level operations
from proceeding forward;

• default_handler, which is just a name for the replacement_handler_t or throw_handler or some other type
based on compile time configuration of the library;

• throw_handler, for throwing an exception on any failed operation;

• incomplete_handler, which will accumulate 1 encode_one/decode_one’s worth of failure and let the end-user
do something with it;

• assume_valid_handler, which triggers no checking for many error conditions and can leads to Undefined Behav-
ior if used on malformed input.

32 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Warning: For the love of what little remains holy, PLEASE don’t use ztd::text::assume_valid_handler
unless you REALLY know you need it. It is a surefire way to open up vulnerabilities in your text processing
algorithm. Not a single line of code using this type should pass code review if there is even the slightest thought
that this will be used on any input that is not PERFECTLY under the DIRECT, PERSONAL control of the authors,
auditors, and maintainers of the code.

These are all the error handlers that you have at your disposal, but they are just pre-provided types you can instantiate
yourself. Nothing stops you from making your own error handling type! In order to do that, however, you need to
understand what an error handler is composed of, and what it’s got inside of itself.

Error Handler Anatomy

An error handler is just a function (or an object with a function call operator) that takes 3 parameters and returns 1
result:

• takes the encoding that will call it when something goes wrong;

• takes the result object you expect to be working with (specifically, ztd::text::encode_result and
ztd::text::decode_result), which contains the current state of affairs from the encoding operation;

• takes a contiguous range representing any input values that may have been read but will not be used; and,

• returns the same result type with any modifications (or not!) you’d like to make.

They are classes with a function call operator and utilizes a few templates. Here’s the skeleton for one:

1 #include <ztd/text.hpp>
2

3 struct my_error_handler {
4 // Helper definitions
5 template <typename Encoding>
6 using code_point_span = ztd::span<const ztd::text::code_point_t<Encoding>>;
7 template <typename Encoding>
8 using code_unit_span = ztd::span<const ztd::text::code_unit_t<Encoding>>;
9

10 // Function call operator that returns a "deduced" (auto) type
11 // Specifically, this one is called for encode failures
12 template <typename Encoding, typename Input, typename Output, typename State>
13 auto operator()(
14 // First Parameter
15 const Encoding& encoding,
16 // Second Parameter, encode-specific
17 ztd::text::encode_result<Input, Output, State> result,
18 // Third Parameter
19 code_point_span<Encoding> input_progress,
20 // Fourth Parameter
21 code_unit_span<Encoding> output_progress) const noexcept {
22 // ... implementation here!
23 (void)encoding;
24 (void)input_progress;
25 (void)output_progress;
26 return result;
27 }
28

(continues on next page)

1.4. Design Goals and Philosophy 33

ztd.text, Release 0.0.0

(continued from previous page)

29 // Function call operator that returns a "deduced" (auto) type
30 // Specifically, this one is called for decode failures
31 template <typename Encoding, typename Input, typename Output, typename State>
32 auto operator()(
33 // First Parameter
34 const Encoding& encoding,
35 // Second Parameter, decode-specific
36 ztd::text::decode_result<Input, Output, State> result,
37 // Third Parameter
38 code_unit_span<Encoding> input_progress,
39 // Fourth Parameter
40 code_point_span<Encoding> output_progress) const noexcept {
41 // ... implementation here!
42 (void)encoding;
43 (void)input_progress;
44 (void)output_progress;
45 return result;
46 }
47 };
48

49 int main(int, char* argv[]) {
50

51 // convert from execution encoding to utf8 encoding,
52 // using our new handler
53 std::string utf8_string = ztd::text::transcode(std::string_view(argv[0]),
54 ztd::text::execution, ztd::text::compat_utf8, my_error_handler {});
55

56 return 0;
57 }

This skeleton, by itself, works. It doesn’t do anything: it just returns the result object as-is. This will result in the
algorithm stopping exactly where the error occurs, and returning back to the user. This is because the result has
an error_code member variable, and that member variable, when it reaches the higher level algorithms, stops all
encoding, decoding, transcoding, counting, validation, and etc. work and exists with the proper information.

First Parameter

The first parameter is simple enough: it is the encoding that is calling this error handler. If you invoke an encode_one
or decode_one (or a higher-level conversion algorithm) on a ztd::text::utf8 object, then you can expect a first parameter
of type ztd::text::utf8 to be passed to the error handler.

Note: If the function call .encode_one or .decode_one is a static function that has no instance, then the encoding
object will create a temporary instance to pass to the function. This happens with most encodings that do not contain
any pertinent information on the encoding object itself, like all the Unicode encodings and the ASCII/locale/string
literal encodings.

This can be handy if you need to access information about the encoding object or encoding type. You can get information
about the encoding by using:

• ztd::text::encode_state_t

• ztd::text::decode_state_t

34 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• ztd::text::code_unit_t<Encoding>

• ztd::text::code_point_t<Encoding>

• ztd::text::code_unit_v<Encoding>

• ztd::text::code_point_v<Encoding>

Second Parameter

The second parameter is the result object. It is of the type ztd::text::decode_result or ztd::text::encode_result. The two
types have identical information inside of them, but have different names so that a function call operator can tell the
difference between the two, if it’s necessary.

This contains all of the state and information that the decode operation/encode operation would return, if left unmodified
by the error handler. If you don’t want to do anything to it, simply pass it through by returning it with return result;
. Otherwise, you have access to the input range, the output range, any .state relevant to the operation, the .
error_code, and the .error_handled value. You can modify any one of theses, or even perform a recovery operation
and change the .error_code to be ztd::text::encoding_error::ok. Literally, anything can be done!

For example, someone can see if there is space left in the result.output parameter, and if so attempt to serialize a
replacement character in place there (this is what ztd::text::replacement_handler_t does).

Third Parameter

The third parameter is a contiguous range of input values that were read. Typically, this is a ztd::span handed to you,
or something that can construct a ztd::span or either code units or code points (whatever the output type has). This
is useful for input_ranges and input_iterators where it is impossible to guarantee a value can be written, as is
the case with istream_iterator and other I/O-style iterators and ranges.

Fourth Parameter

The fourth parameter is a contiguous range of output values that were almost written to the output, but could not
be because the output has no more room left. Typically, this is a ztd::span handed to you, or something that can
construct a ztd::span or either code units or code points (whatever the input type has). This is particularly useful
for output_ranges and output_iterators where there is no way to guarantee all characters will be successfully
written, as is the case with ostream_iterator and other I/O-style iterators and ranges.

The fourth parameter is only ever filled out if the error returned is ztd::text::encoding_error::insufficient_output. It is
very important for when someone does bulk-buffered writes, since multiple writes are not guaranteed to fit within the
given ztd::text::max_code_points_v or ztd::text::max_code_units_v for a specific encoding. (They only represent the
maximum for a single, indivisible operation.)

This is useful for grabbing any would-be-written output data, and storing it for later / completing it. For example,
writing to a smaller, contiguous buffer for delivery and looping around that buffer can be faster, but it runs the risk of
partial reads/writes on the boundaries of said smaller, contiguous buffer.

1.4. Design Goals and Philosophy 35

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/iterator/ostream_iterator

ztd.text, Release 0.0.0

Secret Type Definition

There is a type definition you can add to your error handler to signal that it is okay to ignore it’s calls. It goes on the
struct and looks like:

using assume_valid = std::false_type; // or std::true_type

This is allows any encoding which uses ztd::text::is_ignorable_error_handler property on your error handler to know
if it’s okay to ignore the error handler when bad things happen. Having this functionality means you can create a “debug
handler” for text you previously know is valid, but might want to check during a debug or tracing build or something
as it encodes and decodes through the system:

1 struct my_debug_handler {
2

3 // Assume it's valid if the config value
4 // is explicitly turned off
5 using assume_valid = std::integral_constant<
6 bool, (MY_ENCODING_TRACE_IS_TURNED_OFF != 0)
7 >;
8

9 // rest of the implementation...
10 };

Writing A Handler

When put together, it can generally look like this:

1 #include <ztd/text/encode.hpp>
2 #include <ztd/text/encoding.hpp>
3

4 #include <iostream>
5

6 using ascii_encode_result = ztd::text::encode_result<
7 // input range type
8 ztd::span<const char32_t>,
9 // output range type; figured out from function call

10 ztd::span<char>,
11 // the state type for encode operations
12 ztd::text::encode_state_t<ztd::text::ascii_t>>;
13

14 ascii_encode_result my_printing_handler(const ztd::text::ascii_t& encoding,
15 ascii_encode_result result, ztd::span<const char32_t> unused_read_characters,
16 ztd::span<const char> unused_write_characters) noexcept {
17 (void)encoding;
18 // just printing some information
19 std::cout << "An error occurred.\n"
20 << "\tError code value: " << ztd::text::to_name(result.error_code)
21 << "\n"
22 << "\t# of code unit spaces left: " << result.output.size() << "\n"
23 << "\t# of unused code points: " << unused_read_characters.size()
24 << "\n"
25 << "\n"

(continues on next page)

36 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

26 << "\t# of unused code units: " << unused_write_characters.size()
27 << "\n"
28 << "\tInput units left: " << result.input.size() << "\n";
29 // setting the error to "ok"
30 // tells the algorithm to keep spinning,
31 // even if nothing gets written to the output
32 result.error_code = ztd::text::encoding_error::ok;
33 return result;
34 }
35

36 int main(int, char*[]) {
37 std::string my_ascii_string = ztd::text::encode(
38 // input
39 U"",
40 // to this encoding
41 ztd::text::ascii,
42 // handled with our function
43 &my_printing_handler);
44

45 ZTD_TEXT_ASSERT(my_ascii_string == "");
46

47 return 0;
48 }

The result in my_ascii_string should be an empty string: nothing should have succeeded and therefore the function
will just return an empty string. The print out will look like this:

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: 1

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: 0

If you would like the higher-level called function to return more information to you, use the lower level en-
code_to/encode_into_raw, decode_to/decode_into_raw, transcode_to/transcode_into_raw.

If you need to do more, you can change from concrete types to templates, and work at increasingly higher levels of
genericity in order to have the printing handler do more and more.

Lossy Operation Protection

Occasionally, you will end up in a situation where you want to convert some text from its pristine and ideal Unicode
form to some other form. Maybe for interoperation purposes, maybe because some function call can’t properly handle
embedded NULs in the text so you need to use an overlong sequence to encode the 0 value in your text. No matter what
the case is, you need to leave the world of Unicode Code Points, Unicode Scalar Values, and all the guarantees they
provide you. Let’s take an example, going from UTF-8 to 7-bit-clean ASCII:

1 #include <ztd/text/transcode.hpp>
2

(continues on next page)

1.4. Design Goals and Philosophy 37

ztd.text, Release 0.0.0

(continued from previous page)

3 #include <iostream>
4

5 int main(int, char*[]) {
6 // (1)
7 std::string my_ascii_string = ztd::text::transcode(
8 // input
9 u8"",

10 // from this encoding
11 ztd::text::utf8,
12 // to this encoding
13 ztd::text::ascii);
14

15 std::cout << my_ascii_string << std::endl;
16

17 return 0;
18 }

This will produce a compile time error (with this error number for MSVC as an example):

error C2338: The encode (output) portion of this transcode is a lossy, non-injective operation. This
means you may lose data that you did not intend to lose; specify an ‘out_handler’ error handler parameter
to transcode[_to](in, in_encoding, out_encoding, in_handler, out_handler, ...) or
transcode_into_raw(in, in_encoding, out, out_encoding, in_handler, out_handler,
...) explicitly in order to bypass this.

The reason this happens is because we can detect, at compile time, that the conversion from Unicode Code Points to
ASCII is a lossy transformation. When this happens, we realize the conversion will be a lossy one: therefore, it makes
sense that the user cannot perform the encoding or decoding operation without being explicit about how they are going
to handle errors because there is such a gigantically enormous possibility that they will mangle incoming text.

Since this library is trying to prevent Mojibake and other encoding problems, you are required to tag any potentially-
lossy encoding with an error handler, to be explicit and acknowledge that you may or may not be ruining someone’s
day:

1 #include <ztd/text/transcode.hpp>
2

3 #include <iostream>
4

5 int main(int, char*[]) {
6 std::string my_ascii_string = ztd::text::transcode(
7 // input
8 u8"",
9 // from this encoding

10 ztd::text::utf8,
11 // to this encoding
12 ztd::text::ascii,
13 // (1) error handler
14 ztd::text::replacement_handler);
15

16 std::cout << my_ascii_string << std::endl; // (2)
17

18 ZTD_TEXT_ASSERT(my_ascii_string == "??");
19

20 return 0;
(continues on next page)

38 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

21 }

Any encoding which does not meet the requirements of either ztd::text::is_encode_injective_v or
ztd::text::is_decode_injective_v (or both, for transcoding which uses both an encode and a decode operation)
will throw an error if you specify no error handlers in the text. This is done through the Injectivity Lucky 7 Extensions
that go beyond the traditional Lucky 7 with 2 std::true_type/std::false_type definitions.

1.4.5 Converting, Counting, and Validating Text

Conversions are one of the more important aspects of dealing with textual data. To support this, ztd.text contains 7 dif-
ferent methods, each with various overloads and inner groupings of functions to aid in encoding, decoding, transcoding,
validating, and counting code points and code units.

As shown in the Lucky 7 Design, everything here is supported by just having either the required one or two encoding
objects with the designated functions, variables and type definitions. The core of the explanation is in this algorithm:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results, everything is okay .

• Otherwise,

0. Set up an intermediate buffer of code_points using the max_code_points of the input encoding count
for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
buffer.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

2. Do the encode_one step from the intermediate into the output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

That’s it for the core loop. Failure is determined exclusively by whether or not the error_code returned from the
decode or encode operation’s result object is ztd::text::encoding_error::ok. If it is OK, then the loop continues until
the input is exhausted. Otherwise, it stops. This forms the basis of the library, and will essentially be our version of
“Elements of Programming”, but for working with Text:

1.4. Design Goals and Philosophy 39

ztd.text, Release 0.0.0

The above algorithm can work for all the below operations:

• transcoding: the above loop presented as-is.

• encoding: take an input of code_points, and simply do not do the decoding step.

• decoding: take an input of code_units, and simply do not do the encoding step.

• validating code units: do the transcoding loop into 2 intermediate buffers, and compare the result of the final
intermediate output to the input.

• validating code points: do the transcoding loop, but in the reverse direction for an input of code_points
(encode first, then decode) into 2 intermediate buffers, and compare the result of the final intermediate output
to the input.

• counting code units: perform the “encoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring the actual contents of the buffer each time.

• counting code points: perform the “decoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring actual the contents of the buffer each time.

This covers the full universe of potential operations you may want to perform on encoded text, for the purposes of input
and output. If you implement the base Lucky 7 or implement the extended Lucky 7 for an encoding, you can gain access
to the full ecosystem of encodings within your application.

40 Chapter 1. Who Is This Library For?

https://youtu.be/RnVWON7JmQ0?t=1380

ztd.text, Release 0.0.0

Encode

Encoding is the action of converting from one sequence of decoded information to a sequence of encoded information.
The formula given for Encoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

Fig. 2: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

In particular, we are interested in the operation that helps us go from the decoded input to the encoded output, which
is the bottom half of the diagram. The input in this case is labeled “intermediate”, because that is often what it is. But,
there are many uses for working directly with the encoded data. A lot of the world does not speak directly in 21-bit
Unicode Code Points, but instead speaks in UTF-8. Legacy systems are often found communicating with Code Pages
(e.g., EBCDIC or SHIFT-JIS); until those systems go down or are replaced, it is imperative to send them well-formed
data, whether over a network or across an inter-process communication bridge of any kind.

Thusly, we use the algorithm as below to do the work. Given an input of code_points with an encoding, a tar-
get output, and any necessary additional state, we can generically convert that sequence of code_points into its

1.4. Design Goals and Philosophy 41

ztd.text, Release 0.0.0

encoded form:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, output, and state, everything is okay !

• Otherwise,

0. Do the encode_one step from input (using its begin() and end()) into the output code_unit storage
location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_point sequence to
the code_unit sequence.

Check out the API documentation for ztd::text::encode to learn more.

Decode

Decoding is the action of converting from one sequence of encoded information to a sequence of decoded information.
The formula given for Decoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

In particular, we are interested in the operation that helps us go from the encoded input to the decoded output, which
is the top half of the diagram. The output we are interested in is labeled as an “intermediate”, because that is often
what it is. But, there are many uses for working directly with the decoded data. Many Unicode algorithms are specified
to work over unicode code points or unicode scalar values. In order to identify Word Breaks, classify Uppercase vs.
Lowercase, perform Casefolding, Regex over certain properties properly, Normalize text for search + other operations,
and many more things, one needs to be working with code points as the basic unit of operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, a tar-
get output, and any necessary additional state, we can generically bulk convert the input sequence to a form of
code_points in the output:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, output, and state, everything is okay !

• Otherwise,

0. Do the decode_one step from input (using its begin() and end()) into the output code_point storage
location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_units to the
code_points. Notably, the encoding’s code_point type will hopefully be some sort of unicode code point type
(see: ztd::text::is_code_point for a more code-based classification). Though, it does not have to be for many different
(and very valid) reasons.

Check out the API documentation for ztd::text::decode to learn more.

42 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Fig. 3: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

1.4. Design Goals and Philosophy 43

ztd.text, Release 0.0.0

Transcode

Transcoding is the action of converting from one sequence of encoded information to another sequence of (usually
differently) encoded information. The formula given for Transcoding is actually exactly the same as the one shown in
the main Lucky 7 documentation, reproduced here:

Fig. 4: The generic pathway from one encoding to another for all text Encodings.

The core tenant here is that as long as there is a common intermediary between the 2 encodings, you can decode from
the given input into that shared common intermediary (e.g., unicode code points or unicode scalar values), then encode
from the common intermediary to the second encoding’s output. This is a pretty basic way of translating data and it’s
not even a particularly new idea (iconv has been doing this for well over a decade now, libogonek got this core idea
rolling in a C++ interface, and in general this is quite literally how all data interchange has been done since forever).
The equalizer here is that, unlike other industries that struggle to define an interchange format, Unicode Code Points
has become the clear and overwhelming interoperation choice for people handling text all over the world.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with a from_encoding, a
to_encodingwith a target output, and any necessary additional states, we can generically convert that one encoding

44 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

to the other so long as those encodings follow the Lucky 7 design:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, output, and state, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding as the maximum size of the storage location, for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

2. Do the encode_one step from the intermediate into the output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for any 2 encoding pairs, and does not require the first encoding from_encoding to
know any details about the second encoding to_encoding! This means a user is only responsible for upholding their
end of the bargain with their encoding object, and can thusly interoperate with every other encoding that speaks in the
same intermediate, decoded values (i.e. unicode code points).

Check out the API documentation for ztd::text::transcode to learn more.

Recode

Transcoding is the action of converting from one sequence of encoded information to another sequence of (usually
differently) encoded information. The formula given for Transcoding is actually exactly the same as the one shown in
the main Lucky 7 documentation, reproduced here:

The core tenant here is that as long as there is a common intermediary between the 2 encodings, you can decode from
the given input into that shared common intermediary (e.g., unicode code points or unicode scalar values), then encode
from the common intermediary to the second encoding’s output. This is a pretty basic way of translating data and it’s
not even a particularly new idea (iconv has been doing this for well over a decade now, libogonek got this core idea
rolling in a C++ interface, and in general this is quite literally how all data interchange has been done since forever).
The equalizer here is that, unlike other industries that struggle to define an interchange format, Unicode Code Points
has become the clear and overwhelming interoperation choice for people handling text all over the world.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with a from_encoding, a
to_encodingwith a target output, and any necessary additional states, we can generically convert that one encoding
to the other so long as those encodings follow the Lucky 7 design:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, output, and state, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding as the maximum size of the storage location, for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

1.4. Design Goals and Philosophy 45

ztd.text, Release 0.0.0

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

2. Do the encode_one step from the intermediate into the output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for any 2 encoding pairs, and does not require the first encoding from_encoding to
know any details about the second encoding to_encoding! This means a user is only responsible for upholding their
end of the bargain with their encoding object, and can thusly interoperate with every other encoding that speaks in the
same intermediate, decoded values (i.e. unicode code points).

Check out the API documentation for ztd::text::recode to learn more.

Validate Encodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code points can be turned into code units of the given encoding. The way it does this, however,
is two-fold:

• it first encodes the input code units, to see if it can do the transformation without loss of information; then,

• it decodes the output from the last step, to see if the final output is equivalent to the input.

The algorithm for this is as follows:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, valid set to true and states, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_points, using the
max_code_points of the input encoding, for the next operations.

2. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the decode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_points of the input sequentially against the code_points within the
intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

46 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If
an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the encode_one step and the decode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd::text::validate_encodable_as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

• it first decodes the input code units, to see if it can do the transformation without loss of information; then,

• it encodes the output from the last step, to see if the final output is equivalent to the input.

The algorithm for this is as follows:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, valid set to true, and states, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_units, using the max_code_units
of the input encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_units of the input sequentially against the code_units within the
intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If
an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

1.4. Design Goals and Philosophy 47

ztd.text, Release 0.0.0

Check out the API documentation for ztd::text::validate_decodable_as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

• it first decodes the input code units, to see if it can do the transformation without loss of information; then,

• it encodes the output from the last step.

The algorithm for this is as follows:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, valid set to true, and states, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_units, using the max_code_units
of the output encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. Unlike the encode
and decode validation functions, this one does not have anything to compare its output to. By virtue of converting from
the source to the destination, it is transcodable. Whether or not it can be round-tripped in the other direction isn’t
particularly of concern, just that it can do so without error. This is the more general purpose forms of the encode or
decode operations.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd::text::validate_transcodable_as to learn more.

48 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Count as Decoded

Counting code units is the action of finding out how many code points will result from a given sequence of encoded
information. Essentially, we run the decoding algorithm loop, but instead of giving the end user the decoded values,
we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, current count, and state, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by decode_one; add that difference to the current count.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_units. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_decoded to learn more.

Count as Encoded

Counting encodable data is the action of finding out how many code units will result from a given sequence of already
decoded information, AKA a sequence of code points. Essentially, we run the encoding algorithm loop, but instead of
giving the end user the encoded values, we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, current count, and state, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location, saving the returned intermediate_output from the encode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

1.4. Design Goals and Philosophy 49

ztd.text, Release 0.0.0

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by encode_one; add that difference to the current count.

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_encoded to learn more.

Count as Transcoded

This operation counts how much text will result from a transcode operation. Essentially, we run the encoding algorithm
loop, but instead of giving the end user the re-encoded values, we instead simply provide the count for running that
bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? If so, is the state finished and have nothing to output? If both are true, return the
current results with the the empty input, current count, and state, everything is okay !

• Otherwise,

0. Set up an intermediate storage location of code_points (of the input encoding), using the
max_code_points of the input encoding; and, set up an intermediate_output storage location of
code_units (of the output encoding), for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Do the encode_one step from intermediate (using its begin() and end()) into the
intermediate_output code_unit storage location, saving the returned intermediate_output
from the encode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

3. Compute the difference between the begin(intermediate_output) from the original step, and the
begin(result.output) returned by encode_one; add that difference to the current count.

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_transcoded to learn more.

50 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.4.6 Strong vs. Weak Code Units/Points and Legacy Encodings

Every encoding object must have code_point and code_unit type definitions on it. Typically, this is set to
ztd::text::unicode_code_point. But, if you go through a Prior Work for this library, you will notice Tom Hon-
ermann’s reference implementation for text_view has a concept of even more strictly controlled code_unit and
character_type than this library. From the associated paper:

This library defines a character class template parameterized by character set type used to represent char-
acter values. The purpose of this class template is to make explicit the association of a code point value
and a character set.

. . .

It has also been suggested that char32_t might suffice as the only character type; that decoding of any en-
coded string include implicit transcoding to Unicode code points. The author believes that this suggestion
is not feasible. . .

—Tom Honermann, P0244 text_view

The Case for Strength

This general philosophy in Honermann’s text_view means that you do not just use unsigned char or
unicode_code_point for code unit and code point types, but instead traffic more directly in, for example,
ebcdic_char and ebcdic_code_point types. They are essentially strong type definitions and strong wrappers sim-
pler, “lower level” types like char32_t and char. It has the following tradeoffs:

• ✓✓✓ Can directly connect a range and its value_type to a specific encoding (e.g.,
default_code_point_encoding_t<ascii_code_point> means ascii, definitively).

• ✓✓✓ Actively prevents passing one type of range/view to a function expecting another (e.g.,
std::basic_string<ascii_char> cannot accidentally be given to a function expecting std::string,
where the expectation might be for an execution encoded string.)

• ✓✓✓ Easy to strip out all encoding/codec information and the range types themselves can still recover it
(e.g. ascii_code_point* u32_c_str_ptr can be strongly associated with the ascii encoding, whereas
unicode_code_point* u32_c_str_ptr loses all that information.)

• Requires reinterpret_cast or std::memcpy/std::copy to work with most existing code that do not have
such strongly typed pointers.

• Can generate a lot of template type spam for what are essentially just char.

• Not very good in constexpr, where reinterpret_cast isn’t allowed and there are pre-existing constexpr
functions that are not templated.

The question boils down to: should we have strong code point and code unit types by default in the library?

Henri Sivonen — author of encoding_rs and expert in the text domain — strongly disagrees.

1.4. Design Goals and Philosophy 51

https://github.com/tahonermann/text_view
https://wg21.link/p0244
https://github.com/hsivonen/encoding_rs

ztd.text, Release 0.0.0

The Counterpoint

In a long piece on P0422, the C and C++ landscape, and Standardization efforts, Henri writes:

I think the C++ standard should adopt the approach of “Unicode-only internally” for new text process-
ing facilities and should not support non-Unicode execution encodings in newly-introduced features. This
allows new features to have less abstraction obfuscation for Unicode usage, avoids digging legacy appli-
cations deeper into non-Unicode commitment, and avoids the specification and implementation effort of
adapting new features to make sense for non-Unicode execution encodings.

—Henri Sivonen, It’s Time to Stop Adding New Features for Non-Unicode Execution Encodings in C++

This is a different set of choices and a different set of priorities from the outset. Sivonen’s work specifically is that
with Browsers and large code bases like Firefox; they are responsible for making very good traction and progress on
encoding issues in a world that is filled primarily with Unicode, but still has millions of documents that are not in
Unicode and, for the foreseeable future, won’t end up as Unicode.

This is a strong argument for simply channeling char16_t, char32_t, and – since C++20 – char8_t as the only
types one would need. Firefox at most deals in UTF-16 (due to the JavaScript engine for legacy reasons) and UTF-
8, internally. At the boundaries, it deals with many more text encodings, because it has to from the world wide web.
Occasionally, UTF-32 will appear in someone’s codebase for interoperation purposes or algorithms that need to operate
on something better than code units.

Unicode is also. . . well, a [UNI]versal [CODE]. Its purposes are interoperation, interchange, and common ground
between all the encodings, and it has been the clear winner for this for quite some time now. Sivonen makes a compelling
point for just considering Unicode — and only Unicode — for all future text endeavors.

Do we really need to focus on having support for legacy encodings? Or at least, do we really need support for legacy
encodings at the level that Tom Honermann’s text_view is trying to achieve?

ztd.text’s answer is simple:

52 Chapter 1. Who Is This Library For?

https://hsivonen.fi/non-unicode-in-cpp/
https://encoding.spec.whatwg.org/

ztd.text, Release 0.0.0

Allow Both, Prefer One

ztd.text prefers Henri Sivonen’s approach to the library in general. The code_unit type is generally a weakly-typed
choice of one of the 6 viable code unit types in C++ (char, wchar_t, unsigned char, char8_t, char16_t, and
char32_t). The code_point type is typically just unicode_code_point (an alias for char32_t by default) or
unicode_scalar_value (a strong type by default, because it carries extra pertinent information about itself that
can aid the library). Unfortunately, this means that ztd::text::default_code_point_encoding_t is not a very rich type
mapping (it generally just spits out UTF-8).

This does not mean all future algorithms bear the burden of supporting an infinity of text encodings. But, the work for
encoding and decoding text is isolated and constrained specifically to the encoding objects, view types, and functions
that power this library. Down-stream algorithms — like those found in Zach Laine’s Boost.Text — work only with
range/iterator types whose value_type are either unicode_code_points or unicode_scalar_values.

By having a core, standard ecosystem that works primarily with unicode_code_point and unicode_scalar_value,
we heavily incentivize the use of these two types as the only interchange types. Furthermore, because all of the en-
codings provided by this library use unicode_code_point as their code_point type, we set a strong example for
the rest of the ecosystem who may work with and look at these files. This is even the case for the default byte-based
encoding ztd::text::any_encoding, which strongly incentivizes compatibility with the ecosystem by making it clear that
there is a preferred default mode of communication (which is, ztd::text::unicode_code_point). In effect, we produce
The Unicode™ Vortex™:

1.4. Design Goals and Philosophy 53

ztd.text, Release 0.0.0

This might be the perfect world for most people, but even so there’s room inside that funneled vortex for more.

54 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Leaving Room

There is room in Sivonen’s world, even with perfectly-consistent and fully-Unicode internals, for Honermann’s dream
of never losing encoding information at even the lowest levels. After all, if someone takes the time to wrap up external
interfaces (Shared Pipes, Network Connections, Terminal Interfaces, char Devices, and more), they should have the
ability to tag these interfaces with either encoding objects or strong, reinterpret_cast-able pointer values.

That’s why encodings can still define their own code_unit and code_point types; even if this library — or the
Standard Library — traffics in strictly unicode_code_points, it doesn’t mean the user should be forced to do that if
they are willing to put in the effort for a more type-safe world.

Being able to know, at compile time, without any objects or markup, that a particular pointer + size pairing is meant
for a specific encoding is a powerful way to maintain invariants and track the flow of data without runtime cost through
a program. It can also make it easy to find places where external, non-Unicode data is making it “too far” into the
system, and try to push a conversion closer to the edges of the program.

While ztd.text will traffic and work with char32_t and consider it a unicode_code_point value under most circum-
stances, users are free to define and extend this classification for their own types and generally create as strict (or loose)
as taxonomy as they desire.

In Sum

The library still overwhelmingly traffics in Unicode, and we believe that by making it the default and producing
an overwhelming body of code that treats it as such as can push people towards that default. Using char32_ts,
unicode_code_points, and unicode_scalar_values as Sivonen advocates should have a very low “activation
energy”. Reaching for the strict world envisioned with Honermann’s text_view and its associated implementation is
still possible, but requires more energy. We do not force the user to put in that energy.

As long as both are possible, users can find satisfaction for both of their use cases. Even if Honermann’s design is more
work, it is still quite useful and can lead to a very robust and statically-verifiable design in even huge, complex software
systems.

1.4.7 Lucky 7 Extension - Beyond the Basics

While the given Lucky 7 represents the simplest possible encoding object one can design, there are several more type
definitions, member functions, and other things an individual can use to create more complex encoding objects. Below,
we are going to review the most pertinent ones that allow for better extensibility of the core design and let you go Even
Further Beyond.

State, Completion, Runtime Data, and More

Some states need extra functionality or additional information to function properly. This can manifest as:

• needing extra data on a per-conversion basis that you can maintain yourself;

• needing 2 different types for encode/decode operations;

• OR, needing runtime-dependent, conversion-dependent information for a specific conversion.

1.4. Design Goals and Philosophy 55

https://www.youtube.com/watch?v=tTelnNmRUH0
https://www.youtube.com/watch?v=tTelnNmRUH0

ztd.text, Release 0.0.0

Extra Data and Completion

State objects are always passed into the function by non-const l-value reference (e.g. void f(state_type&
state);). This means that, once a state is created, it can be used to influence how a specific algorithm works. While
most encodings strive to have little to no meaningful state, others can have very meaningful state that should not be
discarded between function calls or that may contribute meaningfully to the encoding or decoding process.

To aid with this, a state type can have a callable function of the form is_complete():

1 class encode_state {
2 public:
3 encode_state_handle_t handle;
4

5 bool is_complete() const noexcept {
6 return state_handle_has_no_more_output(handle);
7 }
8 };

The state_handle_t and state_handle_has_no_more_output are fictitious, but they represent how the given
encode_state type would signal that it has no more work to be done. This is useful for algorithms which may need
to be signaled that a stream has no more data and should thus produce an error if the final bits of data do not form a
complete sequence, or if there are encoding algorithms (such as punycode) that need to collect all input before doing
output operations. When the state has this function present, a user can use ztd::text::is_state_complete(some_state) as
part of a condition to check if a given conversion sequence and its state have fully serialized all possible data.

Separate Encode/Decode States

It is no secret that encoding and decoding may carrying with them separate states. While converting from a legacy
encoding to Unicode may require maintenance of a shift state or code unit modifier, the opposite direction may not need
any at all. Therefore, as an optimization, an encoding object can define both an encode_state and a decode_state,
separate from each other. As an example, here is a (simplified) version of how ztd::text::execution, the encoding for
the Locale-based Runtime Execution Encoding, has two separate states that need to be initialized in different manners:

1 class runtime_locale {
2 public:
3 struct decode_state {
4 std::mbstate_t c_stdlib_state;
5

6 decode_state() noexcept : c_stdlib_state() {
7 // properly set for mbrtoc32 state
8 code_point ghost_ouput[2] {};
9 UCHAR_ACCESS mbrtoc32(ghost_ouput, "\0", 1, &c_stdlib_state);

10 }
11 };
12

13 struct encode_state {
14 std::mbstate_t c_stdlib_state;
15

16 encode_state() noexcept : c_stdlib_state() {
17 // properly set for c32rtomb state
18 code_unit ghost_ouput[MB_LEN_MAX] {};
19 UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);

(continues on next page)

56 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

20 }
21 };

This is the proper way to initialize a std::mbstate_t from the C standard library. Then, you can use it! Here’s a
complete implementation using the new encode_state and decode_state types:

1 class runtime_locale {
2 using rtl_encode_result = ztd::text::encode_result<ztd::span<const code_point>,
3 ztd::span<code_unit>, encode_state>;
4 using rtl_decode_error_handler
5 = std::function<rtl_decode_result(const runtime_locale&, rtl_decode_result,
6 ztd::span<const char>, ztd::span<const char32_t>)>;
7 using rtl_encode_error_handler
8 = std::function<rtl_encode_result(const runtime_locale&, rtl_encode_result,
9 ztd::span<const char32_t>, ztd::span<const char>)>;

10

11 using empty_code_unit_span = ztd::span<const code_unit, 0>;
12 using empty_code_point_span = ztd::span<const code_point, 0>;
13

14 public:
15 rtl_decode_result decode_one(ztd::span<const code_unit> input,
16 ztd::span<code_point> output, rtl_decode_error_handler error_handler,
17 decode_state& current // decode-based state
18) const {
19 if (output.size() < 1) {
20 return error_handler(*this,
21 rtl_decode_result(input, output, current,
22 ztd::text::encoding_error::insufficient_output_space),
23 empty_code_unit_span(), empty_code_point_span());
24 }
25 std::size_t result = UCHAR_ACCESS mbrtoc32(
26 output.data(), input.data(), input.size(), ¤t.c_stdlib_state);
27 switch (result) {
28 case (std::size_t)0:
29 // '\0' was encountered in the input
30 // current.c_stdlib_state was "cleared"
31 // '\0' character was written to output
32 return rtl_decode_result(
33 input.subspan(1), output.subspan(1), current);
34 break;
35 case (std::size_t)-3:
36 // no input read, pre-stored character
37 // was written out
38 return rtl_decode_result(input, output.subspan(1), current);
39 case (std::size_t)-2:
40 // input was an incomplete sequence
41 return error_handler(*this,
42 rtl_decode_result(input, output, current,
43 ztd::text::encoding_error::incomplete_sequence),
44 empty_code_unit_span(), empty_code_point_span());
45 break;
46 case (std::size_t)-1:

(continues on next page)

1.4. Design Goals and Philosophy 57

ztd.text, Release 0.0.0

(continued from previous page)

47 // invalid sequence!
48 return error_handler(*this,
49 rtl_decode_result(input, output, current,
50 ztd::text::encoding_error::invalid_sequence),
51 empty_code_unit_span(), empty_code_point_span());
52 }
53 // everything as fine, then
54 return rtl_decode_result(
55 input.subspan(result), output.subspan(1), current);
56 }
57

58 rtl_encode_result encode_one(ztd::span<const code_point> input,
59 ztd::span<code_unit> output, rtl_encode_error_handler error_handler,
60 encode_state& current // encode-based state
61) const {
62 // saved, in case we need to go
63 // around mulitple times to get
64 // an output character
65 ztd::span<const code_point> original_input = input;
66 // The C standard library assumes
67 // it can write out MB_CUR_MAX characters to the buffer:
68 // we have no guarantee our output buffer is that big, so it
69 // needs to go into an intermediate buffer instead
70 code_unit intermediate_buffer[MB_LEN_MAX];
71

72 for ([[maybe_unused]] int times_around = 0;; ++times_around) {
73 if (input.size() < 1) {
74 // no more input: everything is fine
75 return rtl_encode_result(input, output, current);
76 }
77 std::size_t result = UCHAR_ACCESS c32rtomb(
78 intermediate_buffer, *input.data(), ¤t.c_stdlib_

→˓state);
79 if (result == (std::size_t)-1) {
80 // invalid sequence!
81 return error_handler(*this,
82 rtl_encode_result(original_input, output, current,
83 ztd::text::encoding_error::invalid_sequence),
84 empty_code_point_span(), empty_code_unit_span());
85 }
86 else if (result == (std::size_t)0) {
87 // this means nothing was output
88 // we should probably go-around again,
89 // after modifying input
90 input = input.subspan(1);
91 continue;
92 }
93 // otherwise, we got something written out!
94 if (output.size() < result) {
95 // can't fit!!
96 return error_handler(*this,
97 rtl_encode_result(original_input, output, current,

(continues on next page)

58 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

98 ztd::text::encoding_error::insufficient_output_
→˓space),

99 empty_code_point_span(), empty_code_unit_span());
100 }
101 ::std::memcpy(output.data(), intermediate_buffer,
102 sizeof(*intermediate_buffer) * result);
103 input = input.subspan(1);
104 output = output.subspan(result);
105 break;
106 }
107 return rtl_encode_result(input, output, current);
108 }
109 };
110

111 int main(int argc, char* argv[]) {
112 if (argc < 1) {
113 return 0;
114 }
115 // Text coming in from the command line / program arguments
116 // is (usually) encoded by the runtime locale
117 runtime_locale encoding {};
118 std::string_view first_arg = argv[0];
119 std::u32string decoded_first_arg = ztd::text::decode(
120 first_arg, encoding, ztd::text::replacement_handler_t {});

This allows you to maintain 2 different states, initialized in 2 different ways, one for each of the encode_one and
decode_one function paths.

Encoding-Dependent States

Some states need additional information in order to be constructed and used properly. This can be the case
when the encoding has stored some type-erased information, as ztd::text::any_encoding does, or as if you wrote a
variant_encoding<utf8le, utf16be, ...>. For example, given a type_erased_encoding like so:

1 class type_erased_encoding {
2 private:
3 struct erased_state {
4 virtual ~erased_state () {}
5 };
6

7 struct erased_encoding {
8 virtual std::unique_ptr<erased_state> create_decode_state() = 0;
9 virtual std::unique_ptr<erased_state> create_encode_state() = 0;

10

11 virtual ~erased_encoding () {}
12 };
13

14 template <typename Encoding>
15 struct typed_encoding : erased_encoding {
16 Encoding encoding;
17

(continues on next page)

1.4. Design Goals and Philosophy 59

ztd.text, Release 0.0.0

(continued from previous page)

18 struct decode_state : erased_state {
19 using state_type = ztd::text::decode_state_t<Encoding>;
20 state_type state;
21

22 decode_state(const Encoding& some_encoding)
23 : state(ztd::text::make_decode_state(some_encoding)) {
24 // get a decode state from the given encoding
25 }
26 };
27

28 struct encode_state : erased_state {
29 using state_type = ztd::text::encode_state_t<Encoding>;
30 state_type state;
31

32 decode_state(const Encoding& some_encoding)
33 : state(ztd::text::make_encode_state(some_encoding)) {
34 // get a decode state from the given encoding
35 }
36 };
37

38 typed_encoding(Encoding&& some_encoding)
39 : encoding(std::move(some_encoding)) {
40 // move encoding in
41 }
42

43 typed_encoding(const Encoding& some_encoding)
44 : encoding(some_encoding) {
45 // copy encoding in
46 }
47

48 virtual std::unique_ptr<erased_state> create_decode_state() override {
49 return std::make_unique<decode_state>(encoding);
50 }
51

52 virtual std::unique_ptr<erased_state> create_encode_state() override {
53 return std::make_unique<encode_state>(encoding);
54 }
55 };
56

57 std::unique_ptr<erased_encoding> stored;
58

59 public:
60 template <typename AnyEncoding>
61 type_erased(AnyEncoding&& some_encoding)
62 : stored_ptr(std::make_unique<typed_encoding<std::remove_cvref_t<AnyEncoding>>>(
63 std::forward<AnyEncoding>(some_encoding))
64) {
65 // store any encoding in the member unique pointer
66 }
67

68 // ... rest of the implementation
69 };

60 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

We can see that creating a state with a default constructor no longer works, because the state itself requires more
information than can be known by just the constructor itself. It needs access to the wrapped encoding. The solution to
this problem is an opt-in when creating your state types by giving your state type a constructor that takes the encoding
type:

1 class type_erased_encoding {
2 // from above, etc. ...
3 public:
4 // public-facing wrappers
5 struct type_erased_decode_state {
6 public:
7 // special constructor!!
8 type_erased_state (const type_erased_encoding& encoding)
9 : stored(encoding.stored->create_decode_state()) {

10

11 }
12 private:
13 std::unique_ptr<erased_state> stored;
14 };
15

16 struct type_erased_encode_state {
17 public:
18 // special constructor!!
19 type_erased_state (const type_erased_encoding& encoding)
20 : stored(encoding.stored->create_encode_state()) {
21 // hold onto type-erased state
22 }
23 private:
24 std::unique_ptr<erased_state> stored;
25 };
26

27 using decode_state = type_erased_state;
28 using encode_state = type_erased_state;
29

30 // ... rest of the Lucky 7 members
31 };

These special constructors will create the necessary state using information from the type_erased_encoding to do
it properly. This will allow us to have states that properly reflect what was erased when we perform a given higher-level
conversion operation or algorithm.

This encoding-aware state-construction behavior is detected by the ztd::text::is_state_independent,
ztd::text::is_decode_state_independent, and ztd::text::is_encode_state_independent classifications.

These classifications are used in the ztd::text::make_decode_state and ztd::text::make_encode_state function calls to
correctly construct a state object, which is what the API uses to make states for its higher-level function calls. If you
are working in a generic context, you should use these functions too when working in this minute details. However, if
you’re not working with templates, consider simply using the already-provided ztd::text::any_encoding to do exactly
what this example shows, with some extra attention to detail and internal optimizations done on your behalf.

1.4. Design Goals and Philosophy 61

ztd.text, Release 0.0.0

Skip Input on Error

Some encodings know how to find the next valid sequence after they encounter an error. Many of these encodings
are self synchronizing codes, but yet still others may have enough information on their (encode/decode) state to skip
additional invalid input. This is where the function ztd::text::skip_input_error comes in, and the Lucky 7 Extension
hook that allows an encoding to define the function. There are 2 versions of this function that are optional and can be
written by an encoding author:

• decode_result<...> skip_input_error(decode_result<...> result), which is meant to skip over
bad input from a failed decode operation;

• and, encode_result<...> skip_input_error(encode_result<...> result), which is meant to skip
over bad input from a failed encode operation.

They can appear in a normal encoding like so:

1

2 #include <ztd/text.hpp>
3

4 class my_encoding {
5 public:
6 struct empty { };
7 // the regular Lucky 7 members
8 static inline constexpr std::size_t max_code_points = 1;
9 static inline constexpr std::size_t max_code_units = 1;

10 using state = empty;
11 using code_point = char32_t;
12 using code_unit = char;
13

14 template <typename Input, typename Output, typename ErrorHandler>
15 constexpr static auto decode_one(Input&& input, Output&& output,
16 state& current_state, ErrorHandler&& error_handler) noexcept {
17 // decoding implementation here !
18 return decode_result<ztd::remove_cvref_t<Input>,
19 ztd::remove_cvref_t<Output>, state>(
20 input, output, current_state, ztd::text::encoding_error::ok);
21 }
22

23 template <typename Input, typename Output, typename ErrorHandler>
24 static constexpr auto decode_one(Input&& input, Output&& output,
25 state& current_state, ErrorHandler&& error_handler) noexcept {
26 // encoding implementation here !
27 return encode_result<ztd::remove_cvref_t<Input>,
28 ztd::remove_cvref_t<Output>, state>(
29 input, output, current_state, ztd::text::encoding_error::ok);
30 }
31

32 // Special input skip member here
33 template <typename Input, typename Output, typename State>
34 static constexpr auto skip_input_error(
35 decode_result<Input, Output, State> result) noexcept {
36 // manipulate "result" here,
37 // for any failures in the decode routine.
38 return result;
39 }

(continues on next page)

62 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

40

41 template <typename Input, typename Output, typename State>
42 static constexpr auto skip_input_error(
43 encode_result<Input, Output, State> result) noexcept {
44 // manipulate "result" here,
45 // for any failures in the encode routine.
46 return result;
47 }
48 };

The ztd::text::decode_result and ztd::text::encode_result contain all of the necessary information to perform the skip
(input, output, error_code, state, and error_count fields) that could be needed. For example, on a hypothetical
UTF-16 encoding, one could define a skip_input_error function that behaves like so:

1 #include <ztd/text.hpp>
2

3 #include <utility>
4

5 class my_utf16 : private ztd::text::utf16_t {
6 private:
7 using base_t = ztd::text::utf16_t;
8

9 public:
10 // Lucky 7 Members
11 static inline constexpr std::size_t max_code_points = 1;
12 static inline constexpr std::size_t max_code_units = 2;
13 using state = ztd::text::decode_state_t<ztd::text::utf16_t>;
14 using code_point = char32_t;
15 using code_unit = char16_t;
16 // Extension definitions
17 using is_unicode_encoding = std::true_type; // UTF-16 is Unicode
18 using is_injective = std::true_type; // conversion is not lossy
19

20 // Import base implementation here,
21 // to save on the implementation work!
22 using base_t::decode_one;
23 using base_t::encode_one;
24

25 // Import additional methods
26 using base_t::replacement_code_points;
27 using base_t::replacement_code_units;
28

29 // Special input skip member!!
30 // If this function is present and callable, it will
31 // allow us to skip over bad input.
32 template <typename Input, typename Output, typename State, typename InputRead,
33 typename OutputWritten>
34 constexpr auto skip_input_error(
35 ztd::text::decode_result<Input, Output, State> result,
36 const InputRead& input_already_read,
37 [[maybe_unused]] const OutputWritten& output_already_read) const noexcept {
38 // If we are decoding a UTF-16 sequence,

(continues on next page)

1.4. Design Goals and Philosophy 63

ztd.text, Release 0.0.0

(continued from previous page)

39 // we can have 1 or 2 UTF-16 code units.
40 // they are identifiable as leading and trailing surrogates
41 constexpr char16_t last_utf16_lead_surrogate = 0xDBFF;
42 auto it = ztd::ranges::begin(result.input);
43 auto last = ztd::ranges::end(result.input);
44 if (it != last) {
45 if (ztd::ranges::empty(input_already_read)) {
46 // if no input was already read (e.g. partial read from a
47 // `std::istreambuf_iterator<...>`), then we should
48 // increment the iterator at **least** once! this will␣

→˓prevent us
49 // from constantly erroring over the same stuff.
50 ++it;
51 }
52

53 for (; it != last; ++it) {
54 // We can skip all trailing surrogates, until we find a␣

→˓leading
55 // one.
56 const bool is_good_utf16_stop_point
57 = *it > last_utf16_lead_surrogate;
58 if (is_good_utf16_stop_point) {
59 // we found a good place to stop: get out of␣

→˓here!
60 break;
61 }
62 // if we do not break, we go around the
63 // for loop again, increment the iterator
64 }
65 }
66 // put input range back together, return in constructed result object
67 using SubInput = ztd::ranges::subrange_for_t<Input>;
68 using Result = ztd::text::decode_result<SubInput, Output, State>;
69 return Result(
70 // subrange of input
71 SubInput(std::move(it), std::move(last)),
72 // move the output
73 std::move(result.output),
74 // pass state along
75 result.state,
76 // existing error code
77 result.error_code,
78 // existing error count
79 result.error_count);
80 }
81 };

Assuming, briefly, that this was all put into a file called my_utf16.hpp, it can be used like this:

1 #include "my_utf16.hpp"
2

3 #include <ztd/text.hpp>
(continues on next page)

64 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

4

5 #include <iostream>
6

7 int main(int, char*[]) {
8

9 std::string utf8_string = ztd::text::transcode(
10 u"\xD801\xD802\xD803", my_utf16 {}, ztd::text::compat_utf8);
11

12 std::cout.write(utf8_string.data(), utf8_string.size());
13 std::cout << std::endl;
14 return 0;
15 }

This will come in handy when defining other Unicode variants that may need to skip multiple bits of bad input rather
than juts passing over 1 code unit. ztd::text::replacement_handler and ztd::text::skip_handler will both try to use these
extension points to skip over bad input.

Injective: Promoting Safety in Encodings

As detailed in the Lossy Operation Protection section, is_encode_injective and is_decode_injective help the
library understand when a conversion you are doing cannot be guaranteed at compile time to be lossless. Injectivity is
a high-brow mathematical term:

In mathematics, an injective function (also known as injection, or one-to-one function) is a function that
maps distinct elements of its domain to distinct elements of its codomain.

—Wikipedia, February 2nd, 2021

This is very fancy speak for the fact that for every complete, well-formed input value, there is a well-formed, distinct
output value. It does not have to cover all of the potential output values: so long as there is a one-to-one mapping
that is unambiguous for all the input values, it is injective. For practical purposes, it means that all of the code unit
sequences that are valid can produce a unique code point sequence (“the decode operation is injective”). And, in the
reverse case, it means that all the code point sequences that are valid can produce a unique code unit sequence (“the
encode operation is injective”).

These two properties appear on the type itself, and is a way to opt-in to saying that a conversion is not lossy (e.g., it
preserves information perfectly if the input is well-formed). You can define them by placing them on your Encoding
Object Type’s definition:

1 struct any_unicode_byte_encoding {
2 using is_decode_injective = std::true_type;
3 using is_encode_injective = std::true_type;
4 using code_unit = std::byte;
5 using code_point = ztd::text::unicode_scalar_value;
6 // ...
7 };

This signals that the encode_one and decode_one functions — if they are given well-formed input — will never be
lossy between their code_point type and their code_unit types when performing the desired operation. If only one
half of that equation is lossy, then you can mark only one, or the other. For example, ztd::text::ascii is lossy only in
for the encode_one operation, so it has is_decode_injective = std::true_type; for decode operations, but
is_encode_injective = std::false_type; for encode operations:

1.4. Design Goals and Philosophy 65

https://en.wikipedia.org/wiki/Injective_function

ztd.text, Release 0.0.0

1 /// because one type suffices for both.
2 using state = __txt_detail::__empty_state;
3 //////
4 /// @brief A range of code units representing the values to use when a␣

→˓replacement happen. For ASCII, this
5 /// must be '?' instead of the usual Unicode Replacement Character U''.
6 static constexpr ::ztd::span<const code_unit, 1> replacement_code_

→˓units() noexcept {
7 return __txt_detail::__question_mark_replacement_units<code_unit>

→˓;
8 }
9

10 //////
11 /// @brief Decodes a single complete unit of information as code points␣

→˓and produces a result with the
12 /// input and output ranges moved past what was successfully read and␣

→˓written; or, produces an error and
13 /// returns the input and output ranges untouched.
14 ///
15 /// @param[in] __input The input view to read code uunits from.
16 /// @param[in] __output The output view to write code points into.
17 #include <ztd/epilogue.hpp>

If the type definition is not present and is not std::true_type, then the implementation assumes that this is false for
a given encoding. See ztd::text::is_decode_injective and ztd::text::is_encode_injective for more information.

Replacement Characters

Replacement characters are a way to communicate to the end-user that something went wrong, without having to throw
an exception that may stop the world or stop the encoding/decoding process altogether. The default error handler for text
(ztd::text::default_handler, unless configured otherwise) provides room for you to provide your own encoding types,
and it does so in two ways that is recognized by the library:

Always Has A Replacement

If your type always has a replacement character, regardless of the situation, it can signal this by writing one of two
functions:

• replacement_code_units() (for any failed encode step)

• replacement_code_points() (for any failed decode step)

These functions return a contiguous range of either code_units or code_points, typically a std::span<const
code_unit> or a std::span<const code_point>.

1 class runtime_locale {
2 public:
3 ztd::span<const code_unit> replacement_code_units() const noexcept {
4 if (this->contains_unicode_encoding()) {
5 // Probably CESU-8 or UTF-8!
6 static const char replacement[3] = { '\xEF', '\xBF', '\xBD' };
7 return replacement;
8 }

(continues on next page)

66 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

9 else {
10 // Uh... well, it probably has this? ¯_()_/¯
11 static const char replacement[1] = { '?' };
12 return replacement;
13 }
14 }

If the given replacement range is empty, then nothing is inserted at all (as this is a deliberate choice from the user. See
the next section for how to have this function but graciously return “no replacements” for given runtime conditions).

This is employed, for example, in the ztd::text::ascii encoding, which uses a ‘?’ as its replacement code_unit and
code_point value.

Maybe Has A Replacement

If your type might not have a range of replacement characters but you will not know that until run time, regardless of
the situation, the encoding type can signal this by writing different functions:

• maybe_replacement_code_units() (for any failed encode step)

• maybe_replacement_code_points() (for any failed decode step)

These functions return a std::optional of a contiguous range of either code_units or code_points, typically a
std::optional<std::span<const code_unit>> or a std::optional<std::span<const code_point>>. If
the optional is not engaged (it does not have a value stored), then the replacement algorithm uses its default logic to
insert a replacement character, if possible. Otherwise, if it does have a value, it uses that range. If it has a value but the
range is empty, it uses that empty range (and inserts nothing).

This is useful for encodings which provide runtime-erased wrappers or that wrap platform APIs like
Win32, whose CPINFOEXW structure contains both a WCHAR UnicodeDefaultChar; and a BYTE
DefaultChar[MAX_DEFAULTCHAR];. These can be provided as the range values after being stored on the en-
coding, or similar.

The Default

When none of the above can happen, the ztd::text::replacement_handler_t will attempt to insert a Unicode Replacement
Character (, U'\uFFFD') or the ‘?’ character into the stream, in various ways. See ztd::text::replacement_handler_t
for more details on that process!

Marking an encoding as Unicode-Capable

Sometimes, you need to make your own encodings. Whether for legacy reasons or for interoperation reasons, you need
the ability to write an encoding that can losslessly handle all 221 code points. Whether it’s writing a variant of UTF-7,
or dealing with a very specific legacy set like Unicode v6.0 with the Softbank Private Use Area, you are going to need
to be able to say “hey, my encoding can handle all of the code points and therefore deserves to be treated like a Unicode
encoding”. There are 2 ways to do this, one for decisions that can be made at compile time, and one for decisions that
can be made at runtime (e.g., over a variant_encoding<X, Y, Z>).

1.4. Design Goals and Philosophy 67

https://docs.microsoft.com/en-us/windows/win32/api/winnls/ns-winnls-cpinfoexw
https://en.wikipedia.org/wiki/UTF-7

ztd.text, Release 0.0.0

compile time

The cheapest way to tag an encoding as Unicode Capable and have the library recognize it as such when
ztd::text::is_unicode_encoding is used is to just define a member type definition:

class utf8_v6_softbank {
public:

// ...
using is_unicode_encoding = std::true_type;
// ...

};

That is all you have to write. Both ztd::text::is_unicode_encoding and ztd::text::contains_unicode_encoding will detect
this and use it.

Run-time

If your encoding cannot know at compile time whether or not it is a unicode encoding (e.g., for type-erased encodings,
complex wrapping encodings, or encodings which rely on external operating system resources), you can define a method
instead. When applicable, this will be picked up by the ztd::text::contains_unicode_encoding function. Here is an
example of a runtime, locale-based encoding using platform-knowledge to pick up what the encoding might be, and
determine if it can handle working in Unicode:

1 #endif
2

3 struct encode_state {
4 std::mbstate_t c_stdlib_state;
5

6 encode_state() noexcept : c_stdlib_state() {
7 // properly set for c32rtomb state
8 code_unit ghost_ouput[MB_LEN_MAX] {};
9 UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);

10 }
11 };
12

13 bool contains_unicode_encoding() const noexcept {
14 #if defined(_WIN32)
15 CPINFOEXW cp_info {};
16 BOOL success = GetCPInfoExW(CP_THREAD_ACP, 0, &cp_info);
17 if (success == 0) {
18 return false;
19 }
20 switch (cp_info.CodePage) {
21 case 65001: // UTF-8
22 // etc. etc. ...
23 return true;
24 default:
25 break;
26 }
27 #else
28 }

That is it. ztd::text::contains_unicode_encoding will detect this and use your function call, so you should never

68 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

be calling this or accessing the above compile time classification if necessary and always delegating to the
ztd::text::contains_unicode_encoding function call.

Need for Speed: Extension Points

The core encoding/decoding loops and the Lucky 7 design, while flexible, can come with performance degradation due
to its one-by-one nature. There are many well-researched speedups to validating, counting, and converting UTF and
other kinds of text. In order to accommodate these, ztd.text has a number of places to overload the core behavior by
way of named Argument Dependent Lookup (ADL or Koenig Lookup, named after Andrew Koenig) functions that
serve as extension points. They are listed, with their expected argument forms / counts, here.

Extension points: Arguments

For all extension points, arguments are given based on what was input to one of the original higher-level functions.
They have these forms and general requirements:

• tag - The first argument to every extension point that takes a single encoding. The tag type is ztd::tag<...>
with any const, volatile, or references (& and &&) removed from the decltype of the encoding.

• duo_tag - The first argument to every extension point that takes 2 encodings. The tag type is ztd::tag<...>
with any const, volatile, or references (& and &&) removed from the decltype of the two encodings.

• encoding - The encoding used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two encodings used to perform e.g. a transcode operation.

• input - The input range. Can be of any type. Most encodings should at the very least handle basic iterator-iterator
pairs correctly. These are allowed to have const-correct iterators that produce const-correct references, so never
assume you can write to the input, and appropriately const-qualify any std::spans you use.

• output - The output range. Can be of any output range type, such as a unbounded_view<> with a
back_inserter or a std::span for direct memory writes. The types only requirement is that you can write to
it by getting an iterator from begin(...), and calling *it = value;.

• handler - The error handler used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two error handlers used to perform e.g. a transcode operation.

• state - The state objects used to perform the operation. States are always passed by non-const, l-value refer-
ence. Can be prefixed with from_ or to_ in the argument list to show it is one of two states associated with an
encoding with the same prefix.

• pivot - The pivot range that can be used for any intermediary storage; should be used in place of allocating data
within a routine so an end-user can avoid allocation if he/she desires for any intermediate productions.

Extension Points: Forms & Return Types

Overriding any one of these extension points allows you to hook that behavior. It is very much required that you either
use concrete types to provide these ADL extension points, or heavily constrain them using SFINAE (preferred for
C++17 and below) or Concepts (only C++20 and above).

1.4. Design Goals and Philosophy 69

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/concepts

ztd.text, Release 0.0.0

text_decode

Form: text_decode(tag, input, encoding, output, handler, state).

An extension point to speed up decoding operations for a given encoding, its input and output ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a ztd::text::decode_result.

text_encode

Form: text_encode(input, encoding, output, handler, state).

An extension point to speed up encoding operations for a given encoding, its input and output ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a ztd::text::encode_result.

text_transcode

Form: text_transcode(input, from_encoding, output, to_encoding, from_handler, to_handler,
from_state, to_state, pivot)

An extension point to speed up transcoding in bulk, for a given encoding pair, its input and output ranges, and its error
handlers and states. Useful for known encoding pairs that have faster conversion paths between them.

Must return a ztd::text::transcode_result.

text_transcode_one

Form: text_transcode_one(input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, to_state)

An extension point to provide faster one-by-one encoding transformations for a given encoding pair, its input and
output ranges, and its error handlers and states. This is not a bulk extension point conversion. It is used in the
ztd::text::transcode_view type to increase the speed of iteration, where possible.

Must return a ztd::text::transcode_result.

text_validate_encodable_as_one

Form: text_validate_encodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
decode_one and an encode_one step during the basic validation loop.

Must return a ztd::text::validate_result.

70 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

text_validate_decodable_as_one

Form: text_validate_decodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd::text::validate_result.

text_validate_transcodable_as_one

Form: text_validate_transcodable_as_one(input, from_encoding, to_encoding, decode_state,
encode_state, pivot)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd::text::validate_transcode_result.

text_validate_encodable_as

Form: text_validate_encodable_as(input, encoding, state)

An extension point to provide faster bulk code point validation. There are many tricks to speed up validating of text
using bit twiddling of the input sequence and more.

Must return a ztd::text::validate_result.

text_validate_decodable_as

Form: text_validate_decodable_as(input, encoding, state)

An extension point to provide faster bulk code unit validation. There are many tricks to speed up validating of text
using bit twiddling of the input sequence and more.

Must return a ztd::text::validate_result.

text_count_as_encoded_one

Form: text_count_as_encoded_one(input, encoding, handler, state, pivot)

An extension point to provide faster one-by-one counting. Computation cycles can be saved by only needing to check a
subset of things. For example, specific code point ranges can be used to get a count for UTF-16 faster than by encoding
into an empty buffer.

Must return a ztd::text::count_result.

1.4. Design Goals and Philosophy 71

ztd.text, Release 0.0.0

text_count_as_decoded_one

Form: text_count_as_decoded_one(input, encoding, handler, state)

An extension point to provide faster one-by-one counting. Computation cycles can be saved by only needing to check a
subset of things. For example, the leading byte in UTF-8 can provide an immediate count for how many trailing bytes,
leading to a faster counting algorithm.

Must return a ztd::text::count_result.

text_count_as_encoded

Form: text_count_as_encoded(input, encoding, handler, state)

An extension point for faster bulk code point validation.

Must return a ztd::text::count_result.

text_count_as_decoded

Form: text_count_as_decoded(input, encoding, handler, state)

An extension point for faster bulk code point validation.

Must return a ztd::text::count_result.

That’s All of Them

Each of these extension points are important to one person, or another. For example, Daniel Lemire spends a lot of
time optimizing UTF-8 routines for fast validation or Fast Deterministic Finite Automata (DFA) decoding of UTF-8
and more. There are many more sped up counting, validating, encoding, and decoding routines: therefore it is critical
that any library writer or application developer can produce those for their encodings and, on occasion, override the
base behavior and implementation-defined internal speed up written by ztd.text itself.

1.5 Available Encodings

Below is a table of encodings. Here, we track which encodings can be represented using the Lucky 7 technique, whether
or not we have produced such an implementation, and (if applicable) a link to said implementation.

Most are table-driven encodings, but a select few are not. Tables and data for this are included as part of the Encoding
Tables repository.

As a general point, we hope to support almost all of the encodings here in one form or another! If you’d like to request
prioritization of a certain encoding, let us know.

Table 1: Encoding Progress Table

Name Stateful Implementable? Implemented
UTF-8 No Yes Yes
UTF-16 No Yes Yes
UTF-32 No Yes Yes

continues on next page

72 Chapter 1. Who Is This Library For?

https://github.com/soasis/encoding_tables
https://github.com/soasis/encoding_tables

ztd.text, Release 0.0.0

Table 1 – continued from previous page
Name Stateful Implementable? Implemented
Modified UTF-8 (MUTF-
8)

No Yes Yes

Wobbly Transformation
Format-8 (WTF-8)

No Yes Yes

ASCII No Yes Yes
C Locale Yes (std::mbstate_t) Yes Yes
C Locale, Wide Yes (std::mbstate_t) Yes Yes
String Literals Compiler-Dependent Yes Yes
Wide String Literals Compiler-Dependent Yes Yes
“Anything” Wrapper Typed-Erased Yes Yes
Encoding Scheme Wrapping-Dependent Yes Yes
iconv Encoding Yes Yes Yes
cuneicode Encoding Yes Yes Yes
ARMSCII-8 Unresearched Unconfirmed No
ATARIST No Yes Yes
BIG5 No Yes No
BIG5-2003 No Yes No
Big5-HKSCS No Yes Yes
Big5-HKSCS:1999 No Yes No
Big5-HKSCS:2001 No Yes No
Big5-HKSCS:2004 No Yes No
CP737 Unresearched Unconfirmed No
CP775 Unresearched Unconfirmed No
CP850 Unresearched Unconfirmed No
CP852 Unresearched Unconfirmed No
CP853 Unresearched Unconfirmed No
CP855 Unresearched Unconfirmed No
CP857 Unresearched Unconfirmed No
CP858 Unresearched Unconfirmed No
CP860 Unresearched Unconfirmed No
CP861 Unresearched Unconfirmed No
CP862 Unresearched Unconfirmed No
CP863 Unresearched Unconfirmed No
CP864 Unresearched Unconfirmed No
CP866 Unresearched Unconfirmed No
CP869 (Nice) Unresearched Unconfirmed No
CP932 Unresearched Unconfirmed No
CP936 Unresearched Unconfirmed No
CP949 Unresearched Unconfirmed No
CP1125 Unresearched Unconfirmed No
CP1131 Unresearched Unconfirmed No
CP1133 Unresearched Unconfirmed No
CP1250 Unresearched Unconfirmed No
EUC-CN Unresearched Unconfirmed No
EUC-JISX0213 Unresearched Unconfirmed No
EUC-JP Unresearched Unconfirmed No
EUC-KR No Yes Yes
EUC-TW Unresearched Unconfirmed No

continues on next page

1.5. Available Encodings 73

ztd.text, Release 0.0.0

Table 1 – continued from previous page
Name Stateful Implementable? Implemented
GB18030 (Unicode-
capable)

No Yes Yes

GBK No Yes Yes
Georgian-Academy Unresearched Unconfirmed No
Georgian-PS Unresearched Unconfirmed No
HP-ROMAN8 Unresearched Unconfirmed No
HZ Unresearched Unconfirmed No
IBM 424 Hebrew (Bul-
letin)

No Yes Yes

IBM 856 Hebrew No Yes Yes
IBM 866 Cyrillic (Rus-
sian)

No Yes Yes

IBM 1006 Urdu No Yes Yes
ISO-2022-CN Unresearched Unconfirmed No
ISO-2022-CN-EXT Unresearched Unconfirmed No
ISO-2022-JP Unresearched Unconfirmed No
ISO-2022-JP-1 Unresearched Unconfirmed No
ISO-2022-JP-2 Unresearched Unconfirmed No
ISO-2022-JP-3 Unresearched Unconfirmed No
ISO-2022-JP-MS Unresearched Unconfirmed No
ISO-2022-KR Unresearched Unconfirmed No
ISO-8859-1-1985 Unresearched Unconfirmed No
ISO-8859-1 (1998) Unresearched Unconfirmed No
ISO-8859-2 No Yes Yes
ISO-8859-3 No Yes Yes
ISO-8859-4 No Yes Yes
ISO-8859-5 No Yes Yes
ISO-8859-6 No Yes Yes
ISO-8859-7 No Yes Yes
ISO-8859-8 No Yes Yes
ISO-8859-9 Unresearched Unconfirmed No
ISO-8859-10 No Yes Yes
ISO-8859-13 No Yes Yes
ISO-8859-14 No Yes Yes
ISO-8859-15 No Yes Yes
ISO-8859-16 No Yes Yes
JOHAB Unresearched Unconfirmed No
Kamenicky No Yes Yes
Kazakh-STRK1048 / KZ-
1048

No Yes Yes

KOI8-U No Yes Yes
KOI8-R No Yes Yes
MacArabic Unresearched Unconfirmed No
MacCentralEurope Unresearched Unconfirmed No
MacCroatian Unresearched Unconfirmed No
MacCryllic No Yes Yes
MacGreek Unresearched Unconfirmed No
MacHebrew Unresearched Unconfirmed No
MacIceland Unresearched Unconfirmed No
Macintosh Unresearched Unconfirmed No

continues on next page

74 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Table 1 – continued from previous page
Name Stateful Implementable? Implemented
MacRoman No Yes Yes
MacRomania Unresearched Unconfirmed No
MacThai Unresearched Unconfirmed No
MacTurkish Unresearched Unconfirmed No
MacUkraine Unresearched Unconfirmed No
MuleLao-1 Unresearched Unconfirmed No
NEXTSTEP Unresearched Unconfirmed No
PETSCII (Shifted and Un-
shifted)

No Yes Yes

PT154 Unresearched Unconfirmed No
RISCOS-LATIN1 Unresearched Unconfirmed No
SHIFT-JIS (AKA SHIFT-
JISX0208)

No Yes Yes

SHIFT-JISX0208 No Yes Yes
SHIFT-JISX0213 Yes, shift states Yes No
TACE No Yes No
Tatar (IBM/ASCII) No Yes Yes
Tatar (Windows/ANSI) No Yes Yes
TCVN Unresearched Unconfirmed No
TDS565 Unresearched Unconfirmed No
TIS-620 Unresearched Unconfirmed No
TSCII No Yes No
UTF-EBCDIC No No (Licensed) No
UTF-7 Yes No (Licensed) No
UTF-7-IMAP Yes No (Licensed) No
VISCII Unresearched Unconfirmed No
Windows-437 / DOS
Latin-US

No Yes Yes

Windows-865 / DOS
Nordic

No Yes Yes

Windows-874 No Yes Yes
Windows-1251 No Yes Yes
Windows-1252 / Latin-1 No Yes Yes
Windows-1253 Yes Yes Yes
Windows-1254 No Yes Yes
Windows-1255 No Yes Yes
Windows-1256 No Yes Yes
Windows-1257 No Yes Yes
Windows-1258 No Yes Yes

If you know of an encoding not listed here, let us know in the issue tracker!

1.5. Available Encodings 75

ztd.text, Release 0.0.0

1.6 Known Unicode Encodings

Out of all the encodings listed on the encodings page, only a handful are known to be Unicode Encodings. These are
as follows:

• UTF-7

• UTF-7-IMAP

• UTF-8

• UTF-16 (All Endiannesses)

• UTF-32 (All Endiannesses)

• GB18030

• CESU-8

• MUTF-8

• WTF-8

• UTF-1

• UTF-EBCDIC

When the encoding is known at compile time (e.g., it is just a plain object), it contains a is_unicode_encoding
type member that is set to std::true_type. Otherwise, it is left off. This is detected by
ztd::text::contains_unicode_encoding and ztd::text::is_unicode_encoding.

If you know of any others, please let us know!

1.7 Configuring the Library

There are various configuration macros and CMake/build-time switches that will change the behavior of the library or
attempt to use different

• ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE

– Turns ztd::text::unicode_code_point from a type definition to char32_t to an
implementation-defined class type which enforces the various invariants of being a unicode
code point.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_UNICODE_CODE_POINT_INVARIANT_ABORT

– If ztd::text::unicode_code_point is a distinct class (as controlled by
ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE), each construction of a uni-
code_code_point object that violates the required invariants of a unicode code point will trigger an
abort.

– It is normally a ZTD_TEXT_ASSERT(...) or equivalent.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_DEFAULT_HANDLER_THROWS

76 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

– Makes the ztd::text::default_handler into a throwing handler rather than a replacement char-
acter handler.

– This is not at all recommended since malformed text (or text assumed to be the wrong encoding) is
common, and not properly handling a thrown exception can result in what is, effectively, a denial-of-
service attack for things which need to continually handle untrusted input.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE

– Turns ztd::text::unicode_scalar_value from a type definition to char32_t to an
implementation-defined class type which enforces the various invariants of being a unicode
scalar value.

– Default: on.

– Not turned off by-default under any conditions.

• ZTD_TEXT_UNICODE_SCALAR_VALUE_INVARIANT_ABORT

– If ztd::text::unicode_scalar_value is a distinct class (as controlled by
ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE), each construction of a uni-
code_scalar_value object that violates the required invariants of a unicode scalar value will
trigger an abort.

– It is normally a ZTD_TEXT_ASSERT(...) or equivalent.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_CXX_COMPILE_TIME_ENCODING_NAME

– Gives the ztd::text::literal encoding a name that matches what the encoding of string literals ("") are.

– Overrides any of library’s heuristics and shenanigans to determine the string literal encoding.

– If this does not match the actual string literal encoding, it can cause Undefined Behavior.

– Default: A complex set of platform checks. See ztd::text::literal encoding for more details.

– Not turned on normally under any circumstances.

• ZTD_TEXT_YES_PLEASE_DESTROY_MY_LITERALS_UTTERLY_I_MEAN_IT

– Enables ignoring the fact that the string literal ("") encoding cannot be determined/discovered on the
given platform for the ztd::text::literal encoding.

– Will cause Undefined Behavior if a string literal or wide string literal is encoded or decoded to/from
and the encoding does not match whatever pot-shot guess the system takes.

– Default: off.

– Not turned on by-default under any conditions.

– Please don’t use this unless you have some really, really weird setup that requires messing every-
thing up. . .

• ZTD_CXX_COMPILE_TIME_WIDE_ENCODING_NAME

– Gives the ztd::text::wide_literal encoding a name that matches what the encoding of wide string literals
(L"") are.

– Overrides any of library’s heuristics and shenanigans to determine the wide string literal encoding.

1.7. Configuring the Library 77

ztd.text, Release 0.0.0

– If this does not match the actual wide string literal encoding, it can cause Undefined Behavior.

– Default: A complex set of platform checks. See ztd::text::wide_literal encoding for more details.

– Not turned on normally under any circumstances.

• ZTD_TEXT_YES_PLEASE_DESTROY_MY_WIDE_LITERALS_UTTERLY_I_MEAN_IT

– Enables ignoring the fact that the wide string literal (L"") encoding cannot be determined/discovered
on the given platform for the ztd::text::wide_literal encoding.

– Will cause Undefined Behavior if a string literal or wide string literal is encoded or decoded to/from
and the encoding does not match whatever pot-shot guess the system takes.

– Default: off.

– Not turned on by-default under any conditions.

– Please don’t use this unless you have some really, really weird setup that requires messing every-
thing up. . .

• ZTD_TEXT_INTERMEDIATE_DECODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_DECODE_BUFFER_BYTE_SIZE to have it used
instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

• ZTD_TEXT_INTERMEDIATE_ENCODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_ENCODE_BUFFER_BYTE_SIZE to have it used
instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

• ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE to have it
used instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

• ZTD_TEXT_INTERMEDIATE_RECODE_BUFFER_BYTE_SIZE

78 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_RECODE_BUFFER_BYTE_SIZE to have it used
instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

1.8 API Reference

This is simply a listing of all the available pages containing various APIs, or links to pages that link to API documen-
tation.

1.8.1 Containers

basic_text (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

The basic_text class provides functionality similar to std::string but for performing it on encoded, normalized
text.

template<typename, typename, typename>

class basic_text

using ztd::text::text = u8text
A shortcut for ztd::u8text.

using ztd::text::ntext = basic_text<execution_t>
A container for storing text in the locale, runtime-based encoding.

using ztd::text::wtext = basic_text<wide_execution_t>
A container for storing text in the locale, runtime-based wide encoding.

using ztd::text::nltext = basic_text<literal_t>
A container for storing text in the string literal_t encoding.

using ztd::text::wltext = basic_text<wide_literal_t>
A container for storing text in the wide string literal_t encoding.

using ztd::text::u8text = basic_text<utf8_t>
A container for storing text in the UTF-8 encoding.

1.8. API Reference 79

ztd.text, Release 0.0.0

using ztd::text::u16text = basic_text<utf16_t>
A container for storing text in the UTF-16 encoding.

using ztd::text::u32text = basic_text<utf32_t>
A container for storing text in the UTF-32 encoding.

1.8.2 Views

basic_text_view (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

The basic_text_view class provides a one-by-one view of the stored range’s code points and other functionality in
a more complete form that goes beyond just code point iteration or code unit iteration like ztd::text::decode_view or
ztd::text::encode_view.

Base Template

template<typename _Encoding, typename _NormalizationForm = nfkc, typename _Range =
::std::basic_string_view<code_unit_t<_Encoding>>, typename _ErrorHandler = default_handler_t, typename
_State = decode_state_t<remove_cvref_t<_Encoding>>>
class basic_text_view

A view over a sequence of code units. The code units are expected to be of the given encoding and normalization
form.

Remark

The default type for this is a basic_string_view templated on the code unit type from the encoding. The error
handler is also the default careless error handler, meaning that any lossy conversions will automatically cause a
compile time error.

Template Parameters

• _Encoding – The encoding to store any input and presented text as.

• _NormalizationForm – The normalization form to impose on the stored text’s sequences.

• _Range – The range type that will be stored within this ztd::text::basic_text_view and exam-
ined using the iterators, following the _Encoding type decoding procedure.

• _ErrorHandler – The default error handler to use for any and all operations on text. Gen-
erally, most operations will provide room to override this.

80 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using range_type = _Range
The type that this view is wrapping.

using encoding_type = _Encoding
The encoding type that this view is using to interpret the underlying sequence of code units.

using state_type = remove_cvref_t<_State>
The encoding type that this view is using to interpret the underlying sequence of code units.

using normalization_type = _NormalizationForm
The normalization form type this view is imposing on top of the encoded sequence.

using error_handler_type = _ErrorHandler
The error handling type used by default for any problems in conversions.

Public Functions

template<typename _ViewErrorHandler>
inline constexpr _CodePointView<_ViewErrorHandler> code_points(state_type __state,

_ViewErrorHandler
&&__error_handler) const noexcept

Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark

Moves the provided __state in as the “starting point”.

Template Parameters
_ViewErrorHandler – The type of the passed-in error handler to use for these operations.

Parameters

• __state – [in] The state to use for this code point view.

• __error_handler – [in] The error handler to look at the code points for this code point
view.

inline constexpr _CodePointView code_points(state_type __state) const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark

Moves the provided __state in as the “starting point”.

1.8. API Reference 81

ztd.text, Release 0.0.0

Parameters
__state – [in] The state to use for this code point view.

inline constexpr _CodePointView code_points() const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark

Copies the stored state within the ztd::text::basic_text_view to perform the code point iteration process.

inline constexpr range_type &&base() && noexcept
Access the storage as an r-value reference.

inline constexpr const range_type &base() const & noexcept
Access the storage as a const-qualified l-value reference.

inline constexpr range_type &base() & noexcept
Access the storage as an l-value reference.

Aliases

using ztd::text::text_view = u8text_view
A shortcut for u8text_view.

using ztd::text::ntext_view = basic_text_view<execution_t>
A view for examining text in the locale, runtime-based wide encoding.

using ztd::text::wtext_view = basic_text_view<wide_execution_t>
A view for examining text in the locale, runtime-based wide encoding.

using ztd::text::nltext_view = basic_text_view<literal_t>
A view for examining text in the string literal_t encoding.

using ztd::text::wltext_view = basic_text_view<wide_literal_t>
A view for examining text in the wide string literal_t encoding.

using ztd::text::u8text_view = basic_text_view<utf8_t>
A view for examining text in the UTF-8 encoding.

using ztd::text::u16text_view = basic_text_view<utf16_t>
A view for examining text in the UTF-16 encoding.

using ztd::text::u32text_view = basic_text_view<utf32_t>
A view for examining text in the UTF-32 encoding.

82 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

decode_view

The decode_view class provides a one-by-one view of the stored range’s code points as the desired encoding’s code
units. Dereferencing the iterators returns a single code_point value corresponding to the desired encoding’s transfor-
mation of the internal code units.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but is
fine for one-at-a-time encoding operations. To decode eagerly and in bulk, see the decode functions.

template<typename _Encoding, typename _Range =
__txt_detail::__default_char_view_t<code_unit_t<_Encoding>>, typename _ErrorHandler = default_handler_t,
typename _State = decode_state_t<_Encoding>>
class decode_view : public view_base

A view over a range of code points, presenting the code points as code units. Uses the _Encoding specified to
do so.

Remark

The view presents code point one at a time, regardless of how many code points are output by one decode
operation. This means if, for example, four (4) UTF-8 code units becomes two (2) UTF-16 code points, it will
present one code point at a time. If you are looking to explicitly know what a single decode operation maps into
as far as number of code points to code units (and vice-versa), you will have to use lower-level interfaces.

Template Parameters

• _Encoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _ErrorHandler – The error handler for any encode-step failures.

• _State – The state type to use for the decode operations to intermediate code points.

Public Types

using iterator = decode_iterator<_Encoding, _StoredRange, _ErrorHandler, _State>
The iterator type for this view.

using sentinel = decode_sentinel_t
The sentinel type for this view.

using value_type = ranges::iterator_value_type_t<iterator>
The value type for this view.

using range_type = _Range
The underlying range type.

using encoding_type = _Encoding
The encoding type used for transformations.

1.8. API Reference 83

ztd.text, Release 0.0.0

using error_handler_type = _ErrorHandler
The error handler when a decode operation fails.

using state_type = decode_state_t<encoding_type>
The state type used for decode operations.

Public Functions

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
decode_view> && !::std::is_same_v<remove_cvref_t<_ArgRange>, iterator>>* = nullptr>
inline constexpr decode_view(_ArgRange &&__range) noexcept(::std::is_nothrow_constructible_v<iterator,

_ArgRange>)
Constructs a decode_view from the underlying range.

Remark

The stored encoding, error handler, and state type are default-constructed.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr decode_view(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type>)

Constructs a decode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

inline constexpr decode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler) noexcept(::std::is_nothrow_constructible_v<iterator,
range_type, encoding_type, error_handler_type>)

Constructs a decode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

• __error_handler – [in] The error handler to store in this view.

inline constexpr decode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type, error_handler_type, state_type>)

Constructs a decode_view from the underlying range.

Parameters

84 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

• __error_handler – [in] The error handler to store in this view.

• __state – [in] The state to user for the decode operation.

inline constexpr decode_view(iterator __it) noexcept(::std::is_nothrow_move_constructible_v<iterator>)
Constructs an encoding_view from one of its iterators, reconstituting the range.

Parameters
__it – [in] A previously-made decode_view iterator.

constexpr decode_view() = default
Default constructor. Defaulted.

constexpr decode_view(const decode_view&) = default
Copy constructor. Defaulted.

constexpr decode_view(decode_view&&) = default
Move constructor. Defaulted.

constexpr decode_view &operator=(const decode_view&) = default
Copy assignment operator. Defaulted.

constexpr decode_view &operator=(decode_view&&) = default
Move assignment operator. Defaulted.

inline constexpr iterator begin() & noexcept
The beginning of the range.

inline constexpr iterator begin() const & noexcept
The beginning of the range.

inline constexpr iterator begin() && noexcept
The beginning of the range.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

template<typename _Encoding, typename _Range, typename _ErrorHandler = default_handler_t, typename
_State = decode_state_t<_Encoding>>
class decode_iterator : public __txt_detail::__encoding_iterator<__txt_detail::__transaction::__decode,
decode_iterator<_Encoding, _Range, default_handler_t, decode_state_t<_Encoding>>,
__txt_detail::__iterator_storage<_Encoding, _Range, default_handler_t, decode_state_t<_Encoding>>>

An iterator over a range of code points, presented as a range of code units, using the _Encoding specified to do
so.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The iterator
presents code point one at a time, regardless of how many code points are output by one decode operation. This
means if, for example, four (4) UTF-8 code units becomes two (2) UTF-16 code points, it will present one code
point at a time. If you are looking to explicitly know what a single decode operation maps into as far as number
of code points to code units (and vice-versa), you will have to use lower-level interfaces.

1.8. API Reference 85

ztd.text, Release 0.0.0

Template Parameters

• _Encoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _ErrorHandler – The error handler for any encode-step failures.

• _State – The state type to use for the encode operations to intermediate code points.

Public Types

using range_type = typename __iterator_base_it::range_type
The underlying range type.

using iterator = typename __iterator_base_it::iterator
The base iterator type.

using encoding_type = typename __iterator_base_it::encoding_type
The encoding type used for transformations.

using error_handler_type = typename __iterator_base_it::error_handler_type
The error handler when an encode operation fails.

using state_type = typename __iterator_base_it::state_type
The state type used for encode operations.

using iterator_category = typename __iterator_base_it::iterator_category
The strength of the iterator category, as defined in relation to the base.

using iterator_concept = typename __iterator_base_it::iterator_concept
The strength of the iterator concept, as defined in relation to the base.

using value_type = typename __iterator_base_it::value_type
The object type that gets output on every dereference.

using pointer = typename __iterator_base_it::pointer
A pointer type to the value_type.

using reference = typename __iterator_base_it::value_type
The value returned from derefencing the iterator.

Remark

This is a proxy iterator, so the reference is a non-reference value_type.

86 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

using difference_type = typename __iterator_base_it::difference_type
The type returned when two of these pointers are subtracted from one another.

Remark

It’s not a very useful type. . .

Public Functions

constexpr decode_iterator() = default
Default constructor. Defaulted.

constexpr decode_iterator(const decode_iterator&) = default
Copy constructor. Defaulted.

constexpr decode_iterator(decode_iterator&&) = default
Move constructor. Defaulted.

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
decode_iterator>>* = nullptr>
inline constexpr decode_iterator(_ArgRange &&__range)

noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range.

Remark

Each argument is moved/forwarded in.

Parameters
__range – [in] The range value that will be read from.

inline constexpr decode_iterator(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range, and __encoding.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __encoding – [in] The encoding object to use.

1.8. API Reference 87

ztd.text, Release 0.0.0

inline constexpr decode_iterator(range_type __range, error_handler_type __error_handler)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, error_handler_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range, and __error_handler.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __error_handler – [in] The error handler to use for reporting errors.

inline constexpr decode_iterator(range_type __range, encoding_type __encoding, error_handler_type
__error_handler)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type, error_handler_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range, __encoding, and
__error_handler.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __encoding – [in] The encoding object to use.

• __error_handler – [in] The error handler to use for reporting errors.

inline constexpr decode_iterator(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type, error_handler_type, state_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range, __encoding,
__error_handler and __state.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

88 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __encoding – [in] The encoding object to use.

• __error_handler – [in] The error handler to use for reporting errors.

• __state – [in] The current state.

constexpr decode_iterator &operator=(const decode_iterator&) = default
Copy assignment operator. Defaulted.

constexpr decode_iterator &operator=(decode_iterator&&) = default
Move assignment operator. Defaulted.

encode_view

The encode_view class provides a one-by-one view of the stored range’s code points as the desired encoding’s code
units. Dereferencing the iterators returns a single code_unit value corresponding to the desired encoding’s transfor-
mation of the internal code points.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but is
fine for one-at-a-time encoding operations. To encode eagerly and in bulk, see the encode functions.

template<typename _Encoding, typename _Range =
__txt_detail::__default_char_view_t<code_point_t<_Encoding>>, typename _ErrorHandler = default_handler_t,
typename _State = encode_state_t<_Encoding>>
class encode_view : public view_base

A view over a range of code points, presenting the code points as code units. Uses the _Encoding specified to
do so.

Remark

The view presents code units one at a time, regardless of how many code units are output by one decode operation.
This means if, for example, one (1) UTF-32 code point becomes four (4) UTF-8 code units, it will present each
code unit one at a time. If you are looking to explicitly know what a single encode operation maps into as far as
number of code points to code units (and vice-versa), you will have to use lower-level interfaces.

Template Parameters

• _Encoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _ErrorHandler – The error handler for any encode-step failures.

• _State – The state type to use for the encode operations to intermediate code points.

1.8. API Reference 89

ztd.text, Release 0.0.0

Public Types

using iterator = encode_iterator<_Encoding, _StoredRange, _ErrorHandler, _State>
The iterator type for this view.

using sentinel = encode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using encoding_type = _Encoding
The encoding type used for transformations.

using error_handler_type = _ErrorHandler
The error handler when an encode operation fails.

using state_type = encode_state_t<encoding_type>
The state type used for encode operations.

Public Functions

constexpr encode_view() = default
Default constructor. Defaulted.

constexpr encode_view(const encode_view&) = default
Copy constructor. Defaulted.

constexpr encode_view(encode_view&&) = default
Move constructor. Defaulted.

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
encode_view> && !::std::is_same_v<remove_cvref_t<_ArgRange>, iterator>>* = nullptr>
inline constexpr encode_view(_ArgRange &&__range) noexcept(::std::is_nothrow_constructible_v<iterator,

_ArgRange>)
Constructs an encode_view from the underlying range.

Remark

the stored encoding, error handler, and state type are default-constructed.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr encode_view(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type>)

90 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

inline constexpr encode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler) noexcept(::std::is_nothrow_constructible_v<iterator,
range_type, encoding_type, error_handler_type>)

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

• __error_handler – [in] A previously-made encode_view iterator.

inline constexpr encode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type, error_handler_type, state_type>)

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

• __error_handler – [in] A previously-made encode_view iterator.

• __state – [in] The state to user for the encode operation.

inline constexpr encode_view(iterator __it) noexcept(::std::is_nothrow_move_constructible_v<iterator>)
Constructs an encoding_view from one of its iterators, reconstituting the range.

Parameters
__it – [in] A previously-made encode_view iterator.

constexpr encode_view &operator=(const encode_view&) = default
Copy assignment operator. Defaulted.

constexpr encode_view &operator=(encode_view&&) = default
Move assignment operator. Defaulted.

inline constexpr iterator begin() & noexcept
The beginning of the range.

inline constexpr iterator begin() const & noexcept
The beginning of the range.

inline constexpr iterator begin() && noexcept
The beginning of the range.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

1.8. API Reference 91

ztd.text, Release 0.0.0

template<typename _Encoding, typename _Range, typename _ErrorHandler = default_handler_t, typename
_State = encode_state_t<_Encoding>>
class encode_iterator : public __txt_detail::__encoding_iterator<__txt_detail::__transaction::__encode,
encode_iterator<_Encoding, _Range, default_handler_t, encode_state_t<_Encoding>>,
__txt_detail::__iterator_storage<_Encoding, _Range, default_handler_t, encode_state_t<_Encoding>>>

An iterator over an iterator of code points, presenting the code points as code units. Uses the _Encoding specified
to do so.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The iterator
presents code units one at a time, regardless of how many code units are output by one decode operation. This
means if, for example, one (1) UTF-32 code point becomes four (4) UTF-8 code units, it will present each code
unit one at a time. If you are looking to explicitly know what a single encode operation maps into as far as number
of code points to code units (and vice-versa), you will have to use lower-level interfaces.

Template Parameters

• _Encoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _ErrorHandler – The error handler for any encode-step failures.

• _State – The state type to use for the encode operations to intermediate code points.

Public Types

using range_type = typename __iterator_base_it::range_type
The underlying range type.

using iterator = typename __iterator_base_it::iterator
The base iterator type.

using encoding_type = typename __iterator_base_it::encoding_type
The encoding type used for transformations.

using error_handler_type = typename __iterator_base_it::error_handler_type
The error handler when an encode operation fails.

using state_type = typename __iterator_base_it::state_type
The state type used for encode operations.

using iterator_category = typename __iterator_base_it::iterator_category
The strength of the iterator category, as defined in relation to the base.

using iterator_concept = typename __iterator_base_it::iterator_concept
The strength of the iterator concept, as defined in relation to the base.

92 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

using value_type = typename __iterator_base_it::value_type
The object type that gets output on every dereference.

using pointer = typename __iterator_base_it::pointer
A pointer type to the value_type.

using reference = typename __iterator_base_it::value_type
The value returned from derefencing the iterator.

Remark

This is a proxy iterator, so the reference is a non-reference value_type.

using difference_type = typename __iterator_base_it::difference_type
The type returned when two of these pointers are subtracted from one another.

Remark

It’s not a very useful type. . .

Public Functions

constexpr encode_iterator() = default
Default constructor. Defaulted.

constexpr encode_iterator(const encode_iterator&) = default
Copy constructor. Defaulted.

constexpr encode_iterator(encode_iterator&&) = default
Move constructor. Defaulted.

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
encode_iterator>>* = nullptr>
inline constexpr encode_iterator(_ArgRange &&__range)

noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type>)

Constructs a ztd::text::decode_iterator from the explicitly given __range.

Remark

Each argument is moved/forwarded in.

Parameters
__range – [in] The range value that will be read from.

1.8. API Reference 93

ztd.text, Release 0.0.0

inline constexpr encode_iterator(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type>)

Constructs a ztd::text::encode_iterator from the explicitly given __range, and __encoding.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __encoding – [in] The encoding object to use.

inline constexpr encode_iterator(range_type __range, error_handler_type __error_handler)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, error_handler_type>)

Constructs a ztd::text::encode_iterator from the explicitly given __range, and __error_handler.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __error_handler – [in] The error handler to use for reporting errors.

inline constexpr encode_iterator(range_type __range, encoding_type __encoding, error_handler_type
__error_handler)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type, error_handler_type>)

Constructs a ztd::text::encode_iterator from the explicitly given __range, __encoding, and
__error_handler.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __encoding – [in] The encoding object to use.

• __error_handler – [in] The error handler to use for reporting errors.

94 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr encode_iterator(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<__iterator_base_it,
range_type, encoding_type, error_handler_type, state_type>)

Constructs a ztd::text::encode_iterator from the explicitly given __range, __encoding,
__error_handler and __state.

Remark

Each argument is moved in.

Parameters

• __range – [in] The range value that will be read from.

• __encoding – [in] The encoding object to use.

• __error_handler – [in] The error handler to use for reporting errors.

• __state – [in] The current state.

constexpr encode_iterator &operator=(const encode_iterator&) = default
Copy assignment operator. Defaulted.

constexpr encode_iterator &operator=(encode_iterator&&) = default
Move assignment operator. Defaulted.

recode_view & recode_iterator

The recode_view class provides a one-by-one view of the stored range’s code units as another encoding’s code units.
Dereferencing the iterators returns a single code_unit value corresponding to the desired encoding’s type.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but
is fine for one-at-a-time encoding operations. To decode eagerly and in bulk, see the recode functions. The paired
recode_iterator class does the bulk of the work and stores all of the information. It is paired with an empty, blank
sentinel value so as to decrease the cost of iteration.

template<typename _FromEncoding, typename _ToEncoding = utf8_t, typename _Range =
__txt_detail::__default_char_view_t<code_unit_t<_FromEncoding>>, typename _FromErrorHandler =
default_handler_t, typename _ToErrorHandler = default_handler_t, typename _FromState =
decode_state_t<_FromEncoding>, typename _ToState = encode_state_t<_ToEncoding>>
class recode_view : public view_base

A recoding iterator that takes an input of code units and provides an output over the code units of the
desired _ToEncoding after converting from the _FromEncoding in a fashion that will never produce a
ztd::text::encoding_error::insufficient_output error.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The type will
also try many different shortcuts for decoding the input and encoding the intermediates, respectively, including
invoking a few customization points for either decode_one. or encode_one . It may also call recode_one to

1.8. API Reference 95

ztd.text, Release 0.0.0

bypass having to do the round-trip through two encodings, which an encoding pair that a developer is interested
in can use to do the conversion more quickly. The view presents code units one at a time, regardless of how many
code units are output by one decode operation. This means if, for example, one (1) UTF-16 code unit becomes
two (2) UTF-8 code units, it will present each code unit one at a time. If you are looking to explicitly know each
collection of characters, you will have to use lower-level interfaces.

Template Parameters

• _FromEncoding – The encoding to read the underlying range of code points as.

• _ToEncoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _FromErrorHandler – The error handler for any decode-step failures.

• _ToErrorHandler – The error handler for any encode-step failures.

• _FromState – The state type to use for the decode operations to intermediate code points.

• _ToState – The state type to use for the encode operations to intermediate code points.

Public Types

using iterator = recode_iterator<_FromEncoding, _ToEncoding, _Range, _FromErrorHandler,
_ToErrorHandler, _FromState, _ToState>

The iterator type for this view.

using sentinel = recode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using from_encoding_type = _FromEncoding
The encoding type used for decoding to intermediate code point storage.

using to_encoding_type = _ToEncoding
The encoding type used for encoding to the final code units storage.

using from_error_handler_type = _FromErrorHandler
The error handler when a decode operation fails.

using to_error_handler_type = _ToErrorHandler
The error handler when an encode operation fails.

using from_state_type = _FromState
The state type used for decode operations.

using to_state_type = _ToState
The state type used for encode operations.

96 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Functions

inline constexpr recode_view(range_type __range) noexcept
Constructs a recode_view from the underlying range.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr recode_view(range_type __range, to_encoding_type __to_encoding) noexcept
Constructs a recode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr recode_view(range_type __range, from_encoding_type __from_encoding, to_encoding_type
__to_encoding) noexcept

Constructs a recode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr recode_view(range_type __range, from_encoding_type __from_encoding, to_encoding_type
__to_encoding, from_error_handler_type __from_error_handler,
to_error_handler_type __to_error_handler) noexcept

Constructs a recode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

inline constexpr recode_view(range_type __range, from_encoding_type __from_encoding, to_encoding_type
__to_encoding, from_error_handler_type __from_error_handler,
to_error_handler_type __to_error_handler, from_state_type __from_state,
to_state_type __to_state) noexcept

Constructs a recode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

1.8. API Reference 97

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

• __from_state – [in] The state to user for the decode operation.

• __to_state – [in] The state to user for the decode operation.

inline constexpr iterator begin() & noexcept
The beginning of the range.

inline constexpr iterator begin() const & noexcept
The beginning of the range.

inline constexpr iterator begin() && noexcept
The beginning of the range.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

template<typename _FromEncoding, typename _ToEncoding, typename _Range, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState>
class recode_iterator : private ebco<remove_cvref_t<_FromEncoding>, 1>, private
ebco<remove_cvref_t<_ToEncoding>, 2>, private ebco<remove_cvref_t<_FromErrorHandler>, 3>, private
ebco<remove_cvref_t<_ToErrorHandler>, 4>, private
__txt_detail::__state_storage<remove_cvref_t<_FromEncoding>, remove_cvref_t<_FromState>, 0>, private
__txt_detail::__state_storage<remove_cvref_t<_ToEncoding>, remove_cvref_t<_ToState>, 1>, private
__txt_detail::__cursor_cache<max_code_units_v<unwrap_remove_cvref_t<_ToEncoding>>,
ranges::is_range_input_or_output_range_exactly_v<unwrap_remove_cvref_t<_Range>>>, private
__txt_detail::__error_cache<decode_error_handler_always_returns_ok_v<unwrap_remove_cvref_t<_FromEncoding>,
unwrap_remove_cvref_t<_FromErrorHandler>> &&
encode_error_handler_always_returns_ok_v<unwrap_remove_cvref_t<_ToEncoding>,
unwrap_remove_cvref_t<_ToErrorHandler>>>, private
ebco<ranges::range_reconstruct_t<unwrap_remove_cvref_t<_Range>>, 4>

A recoding iterator that takes an input of code units and provides an output over the code units of the
desired _ToEncoding after converting from the _FromEncoding in a fashion that will never produce a
ztd::text::encoding_error::insufficient_output error.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The type will
also try many different shortcuts for decoding the input and encoding the intermediates, respectively, including
invoking a few customization points for either decode_one or encode_one . It may also call recode_one to
bypass having to do the round-trip through two encodings, which an encoding pair that a developer is interested
in can use to do the conversion more quickly. The view presents code units one at a time, regardless of how many
code units are output by one decode operation. This means if, for example, one (1) UTF-16 code unit becomes
two (2) UTF-8 code units, it will present each code unit one at a time. If you are looking to explicitly know each
collection of characters, you will have to use lower-level interfaces.

98 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Template Parameters

• _FromEncoding – The encoding to read the underlying range of code points as.

• _ToEncoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _FromErrorHandler – The error handler for any decode-step failures.

• _ToErrorHandler – The error handler for any encode-step failures.

• _FromState – The state type to use for the decode operations to intermediate code points.

• _ToState – The state type to use for the encode operations to intermediate code points.

Public Types

using range_type = _Range
The underlying range type.

using iterator_type = _BaseIterator
The base iterator type.

using from_encoding_type = _FromEncoding
The encoding type used for decoding to intermediate code point storage.

using to_encoding_type = _ToEncoding
The encoding type used for encoding to the final code units storage.

using from_error_handler_type = _FromErrorHandler
The error handler when a decode operation fails.

using to_error_handler_type = _ToErrorHandler
The error handler when an encode operation fails.

using from_state_type = remove_cvref_t<_FromState>
The state type used for decode operations.

using to_state_type = remove_cvref_t<_ToState>
The state type used for encode operations.

using iterator_category =
::std::conditional_t<::ztd::ranges::is_iterator_concept_or_better_v<::std::bidirectional_iterator_tag,
_BaseIterator>, ::std::conditional_t<_IsBackwards, ::std::bidirectional_iterator_tag,
::std::forward_iterator_tag>, ranges::iterator_category_t<_BaseIterator>>

The strength of the iterator category, as defined in relation to the base.

using iterator_concept =
::std::conditional_t<::ztd::ranges::is_iterator_concept_or_better_v<::std::bidirectional_iterator_tag,
_BaseIterator>, ::std::conditional_t<_IsBackwards, ::std::bidirectional_iterator_tag,
::std::forward_iterator_tag>, ranges::iterator_concept_t<_BaseIterator>>

1.8. API Reference 99

ztd.text, Release 0.0.0

The strength of the iterator concept, as defined in relation to the base.

using value_type = code_unit_t<_ToEncoding>
The object type that gets output on every dereference.

using pointer = value_type*
A pointer type to the value_type.

using reference = value_type
The value returned from derefencing the iterator.

Remark

This is a proxy iterator, so the reference is a non-reference value_type.

using difference_type = ranges::iterator_difference_type_t<_BaseIterator>
The type returned when two of these pointers are subtracted from one another.

Remark

It’s not a very useful type. . .

Public Functions

inline constexpr recode_iterator() noex-
cept(::std::is_nothrow_default_constructible_v<__base_from_encoding_t>
&& ::std::is_nothrow_default_constructible_v<__base_to_encoding_t>
&&
::std::is_nothrow_default_constructible_v<__base_from_error_handler_t>
&&
::std::is_nothrow_default_constructible_v<__base_to_error_handler_t>
&& ::std::is_nothrow_constructible_v<__base_from_state_t,
_FromEncoding> &&
::std::is_nothrow_constructible_v<__base_to_state_t, _ToEncoding> &&
::std::is_default_constructible_v<__base_range_t>)

Default constructs a ztd::text::recode_iterator.

Remark

This can only work if the underlying encodings, error handlers, and states can handle default construction.

100 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr recode_iterator(const recode_iterator&) = default
Copy constructs a recode_iterator.

constexpr recode_iterator(recode_iterator&&) = default
Move constructs a recode_iterator.

inline constexpr recode_iterator(range_type __range)
noexcept(noexcept(recode_iterator(::std::move(__range),
to_encoding_type{})))

Constructs a recode_iterator from the underlying range.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr recode_iterator(range_type __range, to_encoding_type __to_encoding)
Constructs a recode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr recode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding)

Constructs a recode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr recode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler)

Constructs a recode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

inline constexpr recode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler,
from_state_type __from_state, to_state_type __to_state)

1.8. API Reference 101

ztd.text, Release 0.0.0

Constructs a recode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

• __from_state – [in] The state to user for the decode operation.

• __to_state – [in] The state to user for the decode operation.

constexpr recode_iterator &operator=(const recode_iterator&) = default
Copy assigns- a recode_iterator.

constexpr recode_iterator &operator=(recode_iterator&&) = default
Move assigns a recode_iterator.

inline constexpr const from_encoding_type &from_encoding() const
The decoding (“from”) encoding object.

Returns
A const l-value reference to the encoding object used to construct this iterator.

inline constexpr from_encoding_type &from_encoding()
The decoding (“from”) encoding object.

Returns
An l-value reference to the encoding object used to construct this iterator.

inline constexpr const to_encoding_type &to_encoding() const
The encoding (“to”) encoding object.

Returns
A const l-value reference to the encoding object used to construct this iterator.

inline constexpr to_encoding_type &to_encoding()
The encoding (“to”) encoding object.

Returns
An l-value reference to the encoding object used to construct this iterator.

inline constexpr const from_state_type &from_state() const
The decoding (“from”) state object.

inline constexpr from_state_type &from_state()
The decoding (“from”) state object.

inline constexpr const to_state_type &to_state() const
The encoding (“to”) state object.

102 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr to_state_type &to_state()
The encoding (“to”) state object.

inline constexpr const from_error_handler_type &from_handler() const
The error handler object.

inline constexpr from_error_handler_type &from_handler()
The error handler object.

inline constexpr const to_error_handler_type &to_handler() const & noexcept
The error handler object.

inline constexpr to_error_handler_type &to_handler() & noexcept
The error handler object.

inline constexpr to_error_handler_type &&to_handler() && noexcept
The error handler object.

inline constexpr range_type range() & noexcept(::std::is_copy_constructible_v<range_type> ?
::std::is_nothrow_copy_constructible_v<range_type> :
(::std::is_nothrow_move_constructible_v<range_type>))

The input range used to construct this object.

inline constexpr range_type range() const & noexcept(::std::is_nothrow_copy_constructible_v<range_type>)
The input range used to construct this object.

inline constexpr range_type range() && noexcept(::std::is_nothrow_move_constructible_v<range_type>)
The input range used to construct this object.

inline constexpr encoding_error pivot_error_code() const noexcept
Returns whether the last read operation had an encoding error or not.

Remark

If the error handler is identified as an error handler that, if given a suitably sized buffer, will never re-
turn an error. This is the case with specific encoding operations with ztd::text::replacement_handler_t, or
ztd::text::throw_handler_t.

Returns
The ztd::text::encoding_error that occurred. This can be ztd::text::encoding_error::ok for
an operation that went just fine.

inline constexpr encoding_error error_code() const noexcept
Returns whether the last read operation had an encoding error or not.

Remark

If the error handler is identified as an error handler that, if given a suitably sized buffer, will never re-
turn an error. This is the case with specific encoding operations with ztd::text::replacement_handler_t, or
ztd::text::throw_handler_t.

1.8. API Reference 103

ztd.text, Release 0.0.0

Returns
The ztd::text::encoding_error that occurred. This can be ztd::text::encoding_error::ok for
an operation that went just fine.

inline constexpr recode_iterator operator++(int)
Copy then increment the iterator.

Returns
A copy of iterator, before incrementing.

inline constexpr recode_iterator &operator++()
Increment the iterator.

Returns
A reference to *this, after incrementing the iterator.

inline constexpr value_type operator*() const
Dereference the iterator.

Remark

This is a proxy iterator, and therefore only returns a value_type object and not a reference object. Encoding
iterators are only readable, not writable.

Returns
A value_type (NOT a reference) of the iterator.

Friends

inline friend constexpr friend bool operator== (const recode_iterator &__it,
const recode_sentinel_t &)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator== (const recode_sentinel_t &__sen,
const recode_iterator &__it)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator!= (const recode_iterator &__it,
const recode_sentinel_t &)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator!= (const recode_sentinel_t &__sen,
const recode_iterator &__it)

Compares whether or not this iterator has truly reached the end.

104 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

transcode_view & transcode_iterator

The transcode_view class provides a one-by-one view of the stored range’s code units as another encoding’s code
units. Dereferencing the iterators returns a single code_unit value corresponding to the desired encoding’s type.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but
is fine for one-at-a-time encoding operations. To decode eagerly and in bulk, see the transcode functions. The paired
transcode_iterator class does the bulk of the work and stores all of the information. It is paired with an empty,
blank sentinel value so as to decrease the cost of iteration.

template<typename _FromEncoding, typename _ToEncoding = utf8_t, typename _Range =
__txt_detail::__default_char_view_t<code_unit_t<_FromEncoding>>, typename _FromErrorHandler =
default_handler_t, typename _ToErrorHandler = default_handler_t, typename _FromState =
decode_state_t<_FromEncoding>, typename _ToState = encode_state_t<_ToEncoding>>
class transcode_view : public view_base

A transcoding iterator that takes an input of code units and provides an output over the code units of the
desired _ToEncoding after converting from the _FromEncoding in a fashion that will never produce a
ztd::text::encoding_error::insufficient_output error.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The type will
also try many different shortcuts for decoding the input and encoding the intermediates, respectively, including
invoking a few customization points for either decode_one. or encode_one . It may also call transcode_one
to bypass having to do the round-trip through two encodings, which an encoding pair that a developer is interested
in can use to do the conversion more quickly. The view presents code units one at a time, regardless of how many
code units are output by one decode operation. This means if, for example, one (1) UTF-16 code unit becomes
two (2) UTF-8 code units, it will present each code unit one at a time. If you are looking to explicitly know each
collection of characters, you will have to use lower-level interfaces.

Template Parameters

• _FromEncoding – The encoding to read the underlying range of code points as.

• _ToEncoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _FromErrorHandler – The error handler for any decode-step failures.

• _ToErrorHandler – The error handler for any encode-step failures.

• _FromState – The state type to use for the decode operations to intermediate code points.

• _ToState – The state type to use for the encode operations to intermediate code points.

1.8. API Reference 105

ztd.text, Release 0.0.0

Public Types

using iterator = transcode_iterator<_FromEncoding, _ToEncoding, _Range, _FromErrorHandler,
_ToErrorHandler, _FromState, _ToState>

The iterator type for this view.

using sentinel = transcode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using from_encoding_type = _FromEncoding
The encoding type used for decoding to intermediate code point storage.

using to_encoding_type = _ToEncoding
The encoding type used for encoding to the final code units storage.

using from_error_handler_type = _FromErrorHandler
The error handler when a decode operation fails.

using to_error_handler_type = _ToErrorHandler
The error handler when an encode operation fails.

using from_state_type = _FromState
The state type used for decode operations.

using to_state_type = _ToState
The state type used for encode operations.

Public Functions

inline constexpr transcode_view(range_type __range) noexcept
Constructs a transcode_view from the underlying range.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr transcode_view(range_type __range, to_encoding_type __to_encoding) noexcept
Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

106 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding) noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler)
noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler,
from_state_type __from_state, to_state_type __to_state) noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

• __from_state – [in] The state to user for the decode operation.

• __to_state – [in] The state to user for the decode operation.

inline constexpr iterator begin() & noexcept
The beginning of the range.

1.8. API Reference 107

ztd.text, Release 0.0.0

inline constexpr iterator begin() const & noexcept
The beginning of the range.

inline constexpr iterator begin() && noexcept
The beginning of the range.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

template<typename _FromEncoding, typename _ToEncoding, typename _Range, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState>
class transcode_iterator : private ebco<remove_cvref_t<_FromEncoding>, 1>, private
ebco<remove_cvref_t<_ToEncoding>, 2>, private ebco<remove_cvref_t<_FromErrorHandler>, 3>, private
ebco<remove_cvref_t<_ToErrorHandler>, 4>, private
__txt_detail::__state_storage<remove_cvref_t<_FromEncoding>, remove_cvref_t<_FromState>, 0>, private
__txt_detail::__state_storage<remove_cvref_t<_ToEncoding>, remove_cvref_t<_ToState>, 1>, private
__txt_detail::__cursor_cache<max_code_units_v<unwrap_remove_cvref_t<_ToEncoding>>,
ranges::is_range_input_or_output_range_exactly_v<unwrap_remove_cvref_t<_Range>>>, private
__txt_detail::__error_cache<decode_error_handler_always_returns_ok_v<unwrap_remove_cvref_t<_FromEncoding>,
unwrap_remove_cvref_t<_FromErrorHandler>> &&
encode_error_handler_always_returns_ok_v<unwrap_remove_cvref_t<_ToEncoding>,
unwrap_remove_cvref_t<_ToErrorHandler>>>, private
ebco<__txt_detail::__span_reconstruct_t<unwrap_remove_cvref_t<_Range>, unwrap_remove_cvref_t<_Range>>,
5>

A transcoding iterator that takes an input of code units and provides an output over the code units of the
desired _ToEncoding after converting from the _FromEncoding in a fashion that will never produce a
ztd::text::encoding_error::insufficient_output error.

Remark

This type produces proxies as their reference type, and are only readable, not writable iterators. The type will
also try many different shortcuts for decoding the input and encoding the intermediates, respectively, including
invoking a few customization points for either decode_one or encode_one . It may also call transcode_one
to bypass having to do the round-trip through two encodings, which an encoding pair that a developer is interested
in can use to do the conversion more quickly. The view presents code units one at a time, regardless of how many
code units are output by one decode operation. This means if, for example, one (1) UTF-16 code unit becomes
two (2) UTF-8 code units, it will present each code unit one at a time. If you are looking to explicitly know each
collection of characters, you will have to use lower-level interfaces.

Template Parameters

• _FromEncoding – The encoding to read the underlying range of code points as.

• _ToEncoding – The encoding to read the underlying range of code points as.

• _Range – The range of input that will be fed into the _FromEncoding’s decode operation.

• _FromErrorHandler – The error handler for any decode-step failures.

• _ToErrorHandler – The error handler for any encode-step failures.

• _FromState – The state type to use for the decode operations to intermediate code points.

• _ToState – The state type to use for the encode operations to intermediate code points.

108 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using range_type = _Range
The underlying range type.

using iterator_type = _BaseIterator
The base iterator type.

using from_encoding_type = _FromEncoding
The encoding type used for decoding to intermediate code point storage.

using to_encoding_type = _ToEncoding
The encoding type used for encoding to the final code units storage.

using from_error_handler_type = _FromErrorHandler
The error handler when a decode operation fails.

using to_error_handler_type = _ToErrorHandler
The error handler when an encode operation fails.

using from_state_type = remove_cvref_t<_FromState>
The state type used for decode operations.

using to_state_type = remove_cvref_t<_ToState>
The state type used for encode operations.

using iterator_category =
::std::conditional_t<::ztd::ranges::is_iterator_concept_or_better_v<::std::bidirectional_iterator_tag,
_BaseIterator>, ::std::conditional_t<_IsBackwards, ::std::bidirectional_iterator_tag,
::std::forward_iterator_tag>, ranges::iterator_category_t<_BaseIterator>>

The strength of the iterator category, as defined in relation to the base.

using iterator_concept =
::std::conditional_t<::ztd::ranges::is_iterator_concept_or_better_v<::std::bidirectional_iterator_tag,
_BaseIterator>, ::std::conditional_t<_IsBackwards, ::std::bidirectional_iterator_tag,
::std::forward_iterator_tag>, ranges::iterator_concept_t<_BaseIterator>>

The strength of the iterator concept, as defined in relation to the base.

using value_type = code_unit_t<_ToEncoding>
The object type that gets output on every dereference.

using pointer = value_type*
A pointer type to the value_type.

using reference = value_type
The value returned from derefencing the iterator.

1.8. API Reference 109

ztd.text, Release 0.0.0

Remark

This is a proxy iterator, so the reference is a non-reference value_type.

using difference_type = ranges::iterator_difference_type_t<_BaseIterator>
The type returned when two of these pointers are subtracted from one another.

Remark

It’s not a very useful type. . .

Public Functions

inline constexpr transcode_iterator() noex-
cept(::std::is_nothrow_default_constructible_v<__base_from_encoding_t>
&&
::std::is_nothrow_default_constructible_v<__base_to_encoding_t>
&&
::std::is_nothrow_default_constructible_v<__base_from_error_handler_t>
&&
::std::is_nothrow_default_constructible_v<__base_to_error_handler_t>
&& ::std::is_nothrow_constructible_v<__base_from_state_t,
_FromEncoding> &&
::std::is_nothrow_constructible_v<__base_to_state_t, _ToEncoding>
&& ::std::is_default_constructible_v<__base_range_t>)

Default constructs a ztd::text::transcode_iterator.

Remark

This can only work if the underlying encodings, error handlers, and states can handle default construction.

constexpr transcode_iterator(const transcode_iterator&) = default
Copy constructs a transcode_iterator.

constexpr transcode_iterator(transcode_iterator&&) = default
Move constructs a transcode_iterator.

inline constexpr transcode_iterator(range_type __range)
noexcept(noexcept(transcode_iterator(::std::move(__range),
to_encoding_type{})))

Constructs a transcode_iterator from the underlying range.

Parameters
__range – [in] The input range to wrap and iterate over.

inline constexpr transcode_iterator(range_type __range, to_encoding_type __to_encoding)
Constructs a transcode_iterator from the underlying range.

110 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __range – [in] The input range to wrap and iterate over.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr transcode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding)

Constructs a transcode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr transcode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler)

Constructs a transcode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

inline constexpr transcode_iterator(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler,
from_state_type __from_state, to_state_type __to_state)

Constructs a transcode_iterator from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

• __from_state – [in] The state to user for the decode operation.

1.8. API Reference 111

ztd.text, Release 0.0.0

• __to_state – [in] The state to user for the decode operation.

constexpr transcode_iterator &operator=(const transcode_iterator&) = default
Copy assigns- a transcode_iterator.

constexpr transcode_iterator &operator=(transcode_iterator&&) = default
Move assigns a transcode_iterator.

inline constexpr const from_encoding_type &from_encoding() const
The decoding (“from”) encoding object.

Returns
A const l-value reference to the encoding object used to construct this iterator.

inline constexpr from_encoding_type &from_encoding()
The decoding (“from”) encoding object.

Returns
An l-value reference to the encoding object used to construct this iterator.

inline constexpr const to_encoding_type &to_encoding() const
The encoding (“to”) encoding object.

Returns
A const l-value reference to the encoding object used to construct this iterator.

inline constexpr to_encoding_type &to_encoding()
The encoding (“to”) encoding object.

Returns
An l-value reference to the encoding object used to construct this iterator.

inline constexpr const from_state_type &from_state() const
The decoding (“from”) state object.

inline constexpr from_state_type &from_state()
The decoding (“from”) state object.

inline constexpr const to_state_type &to_state() const
The encoding (“to”) state object.

inline constexpr to_state_type &to_state()
The encoding (“to”) state object.

inline constexpr const from_error_handler_type &from_handler() const
The error handler object.

inline constexpr from_error_handler_type &from_handler()
The error handler object.

inline constexpr const to_error_handler_type &to_handler() const & noexcept
The error handler object.

inline constexpr to_error_handler_type &to_handler() & noexcept
The error handler object.

inline constexpr to_error_handler_type &&to_handler() && noexcept
The error handler object.

112 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr range_type range() & noexcept(::std::is_copy_constructible_v<range_type> ?
::std::is_nothrow_copy_constructible_v<range_type> :
(::std::is_nothrow_move_constructible_v<range_type>))

The input range used to construct this object.

inline constexpr range_type range() const & noexcept(::std::is_nothrow_copy_constructible_v<range_type>)
The input range used to construct this object.

inline constexpr range_type range() && noexcept(::std::is_nothrow_move_constructible_v<range_type>)
The input range used to construct this object.

inline constexpr encoding_error pivot_error_code() const noexcept
Returns whether the last read operation had an encoding error or not.

Remark

If the error handler is identified as an error handler that, if given a suitably sized buffer, will never re-
turn an error. This is the case with specific encoding operations with ztd::text::replacement_handler_t, or
ztd::text::throw_handler_t.

Returns
The ztd::text::encoding_error that occurred. This can be ztd::text::encoding_error::ok for
an operation that went just fine.

inline constexpr encoding_error error_code() const noexcept
Returns whether the last read operation had an encoding error or not.

Remark

If the error handler is identified as an error handler that, if given a suitably sized buffer, will never re-
turn an error. This is the case with specific encoding operations with ztd::text::replacement_handler_t, or
ztd::text::throw_handler_t.

Returns
The ztd::text::encoding_error that occurred. This can be ztd::text::encoding_error::ok for
an operation that went just fine.

inline constexpr transcode_iterator operator++(int)
Copy then increment the iterator.

Returns
A copy of iterator, before incrementing.

inline constexpr transcode_iterator &operator++()
Increment the iterator.

Returns
A reference to *this, after incrementing the iterator.

1.8. API Reference 113

ztd.text, Release 0.0.0

inline constexpr value_type operator*() const
Dereference the iterator.

Remark

This is a proxy iterator, and therefore only returns a value_type object and not a reference object. Encoding
iterators are only readable, not writable.

Returns
A value_type (NOT a reference) of the iterator.

Friends

inline friend constexpr friend bool operator== (const transcode_iterator &__it,
const transcode_sentinel_t &)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator== (const transcode_sentinel_t &__sen,
const transcode_iterator &__it)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator!= (const transcode_iterator &__it,
const transcode_sentinel_t &)

Compares whether or not this iterator has truly reached the end.

inline friend constexpr friend bool operator!= (const transcode_sentinel_t &__sen,
const transcode_iterator &__it)

Compares whether or not this iterator has truly reached the end.

1.8.3 Encodings

See also the top-level encodings page for more details about the overall status and known vs. implemented encodings.

any_encoding

any_encoding is a class type whose sole purpose is to provide a type-generic, byte-based, runtime-deferred way of
handling encodings.

114 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Aliases

using ztd::text::any_encoding = any_byte_encoding<::std::byte>
The canonical erased encoding type which uses a std::byte as its code unit type and an unicode_code_point
as its code point type, with spans for input and output operations.

Remark

If the input encoding does not match std::byte, it will be first wrapped in a ztd::text::encoding_scheme first.

Base Template

template<typename _Byte, typename _CodePoint = unicode_code_point>

class any_byte_encoding : public ztd::text::any_encoding_with<_Byte, const unicode_code_point, const _Byte,
unicode_code_point>

An encoding type that wraps up other encodings to specifically traffic in the given _Byte type provided, which
is typically set to std::byte .

Remark

This type traffics solely in std::span s, which for most people is fine. Others may want to interface with different
iterator types (e.g., from a custom Rope implementation or other). For those, one must first create ranges that
can operate with those iterators, then use them themselves. (It’s not an ideal process at the moment, and we
are looking to make this experience better.) It is recommended to use the provided ztd::text::any_encoding
type definition instead of accessing this directly, unless you have a reason for using a different byte type (e.g.,
interfacing with legacy APIs).

Template Parameters
_Byte – The byte type to use. Typically, this is either unsigned char or std::byte .

Public Types

using decode_state = any_decode_state
The state that can be used between calls to decode.

Remark

This is an opaque struct with no members. It follows the “encoding-dependent state” model, which means
it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize its state.

1.8. API Reference 115

ztd.text, Release 0.0.0

using encode_state = any_encode_state
The state that can be used between calls to encode.

Remark

This is an opaque struct with no members. It follows the “encoding-dependent state” model, which means
it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize its state.

using code_unit = ranges::range_value_type_t<_EncodeCodeUnits>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = ranges::range_value_type_t<_DecodeCodePoints>
The individual units that result from a decode operation or as used as input to an encode operation.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code point values.

Remark

This is always going to be false because this is a type-erased encoding; this value is determined by a runtime
decision, which means that the most conservative and truthful answer is selected for this property.

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

Remark

This is always going to be false because this is a type-erased encoding; this value is determined by a runtime
decision, which means that the most conservative and truthful answer is selected for this property.

Public Functions

any_byte_encoding() = delete
Cannot default-construct a ztd::text::any_byte_encoding object.

template<typename _EncodingArg, typename ..._Args,
::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_EncodingArg>, any_byte_encoding> &&
!::std::is_same_v<__txt_detail::__code_unit_or_void_t<remove_cvref_t<_EncodingArg>>, _Byte> &&
!is_specialization_of_v<remove_cvref_t<_EncodingArg>, ::ztd::text::any_byte_encoding> &&
!::std::is_same_v<remove_cvref_t<_EncodingArg>, __base_t> &&
!is_specialization_of_v<remove_cvref_t<_EncodingArg>, ::std::in_place_type_t>>* = nullptr>

116 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline any_byte_encoding(_EncodingArg &&__encoding, _Args&&... __args)
Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

Remark

If the provided encoding does not have a byte code_unit type, it is wrapped in an ztd::text::encoding_scheme
first.

Parameters

• __encoding – [in] The encoding object that informs the ztd::text::any_byte_encoding
what encoding object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

template<typename _EncodingArg, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<_Byte,
code_unit_t<remove_cvref_t<_EncodingArg>>>>* = nullptr>
inline any_byte_encoding(::std::in_place_type_t<_EncodingArg>, _Args&&... __args)

Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

Remark

If the provided encoding does not have a byte code_unit type, it is wrapped in an ztd::text::encoding_scheme
first.

Template Parameters
_EncodingArg – The Encoding specified by the std::in_place_type<...> argument.

Parameters
__args – [in] Any additional arguments used to construct the encoding in the erased storage.

template<typename _EncodingArg, typename ..._Args, ::std::enable_if_t<::std::is_same_v<_Byte,
code_unit_t<remove_cvref_t<_EncodingArg>>>>* = nullptr>
inline any_byte_encoding(::std::in_place_type_t<_EncodingArg> __tag, _Args&&... __args)

Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

Remark

If the provided encoding does not have a byte code_unit type, it is wrapped in an ztd::text::encoding_scheme
first.

Template Parameters
_EncodingArg – The Encoding specified by the std::in_place_type<...> argument.

Parameters

• __tag – [in] A tag containing the encoding type.

1.8. API Reference 117

ztd.text, Release 0.0.0

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

any_byte_encoding(const any_byte_encoding&) = delete
Cannot copy-construct a ztd::text::any_byte_encoding object.

any_byte_encoding &operator=(const any_byte_encoding&) = delete
Cannot copy-assign a ztd::text::any_byte_encoding object.

any_byte_encoding(any_byte_encoding&&) = default
Move-constructs a ztd::text::any_byte_encoding from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::any_byte_encoding, except for destruction, is a violation and invokes Undefined Behavior
(generally, a crash).

any_byte_encoding &operator=(any_byte_encoding&&) = default
Move-assigns a ztd::text::any_byte_encoding from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::any_byte_encoding, except for destruction, is a violation and invokes Undefined Behavior
(generally, a crash).

inline ::std::optional<::ztd::span<const code_point>> maybe_replacement_code_points() const noexcept
Retrieves the replacement code points for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns
A std::optional of ztd::span of const code_points. The returned std::optional
value is engaged (has a value) if the stored encoding has a valid replacement_code_points
function and it can be called. If it does not, then the library checks to see if the
maybe_replacement_code_points function exists, and returns the std::optional from
that type directly. If neither are present, an unengaged std::optional is returned.

inline ::std::optional<::ztd::span<const code_unit>> maybe_replacement_code_units() const noexcept
Retrieves the replacement code units for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns
A std::optional of ztd::span of const code_units. The returned std::optional
value is engaged (has a value) if the stored encoding has a valid replacement_code_units
function and it can be called. If it does not, then the library checks to see if the
maybe_replacement_code_units function exists, and returns the std::optional from
that type directly. If neither are present, an unengaged std::optional is returned.

118 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline bool contains_unicode_encoding() const noexcept
Returns whether or not the encoding stored in this ztd::text::any_encoding_with is a Unicode encoding.

Remark

This can be useful to know, in advance, whether or not there is a chance for lossy behavior. Even if, at
compile time, various functions will demand you use an error handler, this runtime property can help you
get a decent idea of just how bad and lossy this conversion might be compared to normal UTF conversion
formats.

inline __decode_result decode_one(_DecodeCodeUnits __input, _DecodeCodePoints __output,
__decode_error_handler __error_handler, decode_state &__state) const

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

inline __encode_result encode_one(_EncodeCodePoints __input, _EncodeCodeUnits __output,
__encode_error_handler __error_handler, encode_state &__state) const

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

1.8. API Reference 119

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = _MaxCodePoints
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units = _MaxCodeUnits
The maximum code units a single complete operation of encoding can produce.

static constexpr ::ztd::text_encoding_id decoded_id = ::ztd::text_encoding_id::unknown
The decoded id. Because this is a type-erased encoding, anything can come out: therefore, it is set to
“unknown” at all times.

static constexpr ::ztd::text_encoding_id encoded_id = ::ztd::text_encoding_id::unknown
The encoded id. Because this is a type-erased encoding, anything can come out: therefore, it is set to
“unknown” at all times.

any_encoding_with

This is the lowest level base template, any_encoding_with, that sits beneath any_encoding and any_byte_encoding.
It is recommended for power users with specific goals for the input and output types of the encode and decode
operations, where normal buffer-based I/O is unsuitable. In general, you should be relying on any_encoding and
any_byte_encoding.

Base Template

template<typename _EncodeCodeUnits, typename _EncodeCodePoints, typename _DecodeCodeUnits,
typename _DecodeCodePoints, ::std::size_t _MaxCodeUnits =
__txt_detail::__default_max_code_units_any_encoding, ::std::size_t _MaxCodePoints =
__txt_detail::__default_max_code_points_any_encoding>
class any_encoding_with

An encoding class which has the given encode output and input, as well as the decode input and output ranges,
provided as fixed types alongside the maximum number of code units put in and pushed out.

120 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

This class is generally interacted with by using its derivate class, ztd::text::any_byte_encoding, and its conve-
nience alias, ztd::text::any_encoding. This class’s use is recommended only for power users who have encoding
ranges that cannot be interacted with through ztd::span and therefore need other ways. We are looking into
ways to produce a ranges::subrange<any_iterator> as a completely generic range to aid those individuals who do
not want to deal in just ztd::spans.

Template Parameters

• _EncodeCodeUnits – The output of encode_one and related operations.

• _EncodeCodePoints – The input of encode_one and related operations.

• _DecodeCodeUnits – The input of decode_one and related operations.

• _DecodeCodePoints – The output of decode_one and related operations.

• _MaxCodeUnits – The maximum number of code units that can be output through a given
operation. Directly related to the maximum_code_units inline constexpr variable definition.

• _MaxCodePoints – The maximum number of code points that can be output through a given
operation. Directly related to the maximum_code_points inline constexpr variable definition.

Subclassed by any_byte_encoding< _Byte, _CodePoint >

Public Types

using decode_state = any_decode_state
The state that can be used between calls to decode.

Remark

This is an opaque struct with no members. It follows the “encoding-dependent state” model, which means
it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize its state.

using encode_state = any_encode_state
The state that can be used between calls to encode.

Remark

This is an opaque struct with no members. It follows the “encoding-dependent state” model, which means
it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize its state.

using code_unit = ranges::range_value_type_t<_EncodeCodeUnits>
The individual units that result from an encode operation or are used as input to a decode operation.

1.8. API Reference 121

ztd.text, Release 0.0.0

using code_point = ranges::range_value_type_t<_DecodeCodePoints>
The individual units that result from a decode operation or as used as input to an encode operation.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code point values.

Remark

This is always going to be false because this is a type-erased encoding; this value is determined by a runtime
decision, which means that the most conservative and truthful answer is selected for this property.

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

Remark

This is always going to be false because this is a type-erased encoding; this value is determined by a runtime
decision, which means that the most conservative and truthful answer is selected for this property.

Public Functions

any_encoding_with() = delete
Cannot default-construct a ztd::text::any_encoding_with object.

template<typename _Encoding, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<_Encoding,
any_encoding_with> && !is_specialization_of_v<remove_cvref_t<_Encoding>, ::std::in_place_type_t>>* =
nullptr>
inline any_encoding_with(_Encoding &&__encoding, _Args&&... __args)

Constructs a ztd::text::any_encoding_with with the encoding object and any additional arguments.

Template Parameters
_Encoding – The Encoding specified by the first argument.

Parameters

• __encoding – [in] The encoding object that informs the ztd::text::any_encoding_with
what encoding object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

template<typename _Encoding, typename ..._Args>
inline any_encoding_with(::std::in_place_type_t<_Encoding> __tag, _Args&&... __args)

Constructs a ztd::text::any_encoding_with with the encoding type specified in the __tag argument.

Template Parameters
_Encoding – The Encoding specified by the __tag argument.

Parameters

122 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __tag – [in] The type marker that informs the ztd::text::any_encoding_with what encoding
object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

any_encoding_with(const any_encoding_with&) = delete
Cannot copy-construct a ztd::text::any_encoding_with object.

any_encoding_with &operator=(const any_encoding_with&) = delete
Cannot copy-assign a ztd::text::any_encoding_with object.

any_encoding_with(any_encoding_with&&) = default
Move-constructs a ztd::text::any_encoding_with from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::any_encoding_with, except for destruction, is a violation and invokes Undefined Behavior
(generally, a crash).

any_encoding_with &operator=(any_encoding_with&&) = default
Move-assigns a ztd::text::any_encoding_with from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::any_encoding_with, except for destruction, is a violation and invokes Undefined Behavior
(generally, a crash).

inline ::std::optional<::ztd::span<const code_point>> maybe_replacement_code_points() const noexcept
Retrieves the replacement code points for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns
A std::optional of ztd::span of const code_points. The returned std::optional
value is engaged (has a value) if the stored encoding has a valid replacement_code_points
function and it can be called. If it does not, then the library checks to see if the
maybe_replacement_code_points function exists, and returns the std::optional from
that type directly. If neither are present, an unengaged std::optional is returned.

inline ::std::optional<::ztd::span<const code_unit>> maybe_replacement_code_units() const noexcept
Retrieves the replacement code units for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns
A std::optional of ztd::span of const code_units. The returned std::optional
value is engaged (has a value) if the stored encoding has a valid replacement_code_units
function and it can be called. If it does not, then the library checks to see if the
maybe_replacement_code_units function exists, and returns the std::optional from
that type directly. If neither are present, an unengaged std::optional is returned.

1.8. API Reference 123

ztd.text, Release 0.0.0

inline bool contains_unicode_encoding() const noexcept
Returns whether or not the encoding stored in this ztd::text::any_encoding_with is a Unicode encoding.

Remark

This can be useful to know, in advance, whether or not there is a chance for lossy behavior. Even if, at
compile time, various functions will demand you use an error handler, this runtime property can help you
get a decent idea of just how bad and lossy this conversion might be compared to normal UTF conversion
formats.

inline __decode_result decode_one(_DecodeCodeUnits __input, _DecodeCodePoints __output,
__decode_error_handler __error_handler, decode_state &__state) const

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

inline __encode_result encode_one(_EncodeCodePoints __input, _EncodeCodeUnits __output,
__encode_error_handler __error_handler, encode_state &__state) const

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

124 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = _MaxCodePoints
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units = _MaxCodeUnits
The maximum code units a single complete operation of encoding can produce.

static constexpr ::ztd::text_encoding_id decoded_id = ::ztd::text_encoding_id::unknown
The decoded id. Because this is a type-erased encoding, anything can come out: therefore, it is set to
“unknown” at all times.

static constexpr ::ztd::text_encoding_id encoded_id = ::ztd::text_encoding_id::unknown
The encoded id. Because this is a type-erased encoding, anything can come out: therefore, it is set to
“unknown” at all times.

class any_decode_state

Public Functions

inline any_decode_state(const any_encoding_with &__encoding)
Creates a state properly initialized from the stored encoding.

any_decode_state(const any_decode_state&) = delete
You cannot copy construct an any_decode_state.

any_decode_state &operator=(const any_decode_state&) = delete
You cannot copy assign an any_decode_state.

any_decode_state(any_decode_state&&) = default
Move constructs an any_decode_state.

any_decode_state &operator=(any_decode_state&&) = default
Move assigns an any_decode_state.

class any_encode_state

1.8. API Reference 125

ztd.text, Release 0.0.0

Public Functions

inline any_encode_state(const any_encoding_with &__encoding)
Creates a state properly initialized from the stored encoding.

any_encode_state(const any_encode_state&) = delete
You cannot copy construct an any_encode_state.

any_encode_state &operator=(const any_encode_state&) = delete
You cannot copy assign an any_encode_state.

any_encode_state(any_encode_state&&) = default
Move constructs an any_encode_state.

any_encode_state &operator=(any_encode_state&&) = default
Move assigns an any_encode_state.

ASCII

The American Standard Code for Information Interchange (ASCII). A typical 7-bit encoding that is bitwise-compatible
with UTF-8.

Aliases

constexpr ascii_t ztd::text::ascii = {}
An instance of the ascii_t type for ease of use.

typedef basic_ascii<char> ztd::text::ascii_t

The American Standard Code for Information Exchange (ASCII) Encoding.

Remark

The most vanilla and unimaginative encoding there is in the world, excluding tons of other languages, dialects,
and even common English idioms and borrowed words. Please don’t pick this unless you have good reason!

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_ascii
The American Standard Code for Information Exchange (ASCII) Encoding.

Remark

The most vanilla and unimaginative encoding there is in the world, excluding tons of other languages, dialects,
and even common English idioms and borrowed words. Please don’t pick this unless you have good reason!

126 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Template Parameters
_CodeUnit – The code unit type to work over.

Public Types

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder.

Remark

It is an empty struct because there is no shift state to preserve between complete units of encoded infor-
mation. It is also only state and not separately decode_state and encode_state because one type
suffices for both.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values.

Remark

ASCII can decode from its 7-bit (unpacked) code units to Unicode Code Points. Since the converion is
lossless, this property is true.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code unit values. This is not true
for ASCII, as many Unicode Code Point and Unicode Scalar Values cannot be represented in ASCII. Since
the conversion is lossy, this property is false.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 1> replacement_code_units() noexcept
A range of code units representing the values to use when a replacement happen. For ASCII, this must be
‘?’ instead of the usual Unicode Replacement Character U’’.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__s)

1.8. API Reference 127

ztd.text, Release 0.0.0

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

128 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Static Attributes

static constexpr const ::std::size_t max_code_units = 1
The maximum code units a single complete operation of encoding can produce.

static constexpr const ::std::size_t max_code_points = 1
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

basic_iconv

This encoding is only available if the configuration macro/build option for ZTD_PLATFORM_LIBICONV is turned on.

This encoding is tied to the iconv library. It will attempt to use the header and the functions directly, and if not otherwise
bootstrap iconv on first use of the encoding through GetProcAddress/dlsym and related. If it cannot find it will either
assert, abort, or loudly annoy the user in some way. The code is retrieved dynamically where possible unless the user
explicitly defines the build option for ZTD_TEXT_USE_STATIC_LIBICONV (for CMake), as iconv is under a LGPL/GPL
licensed and cannot be traditionally built / statically linked with application code (though in the future we may provide
a way for software to do that if the software being made with this library is also GPL-compatible software).

iconv has a fixed set of encodings it can be compiled with to support. States are pre-constructed in the encoding itself
and copied as necessary when encode_state or decode_states are being created to call the iconv functions. The
user can inspect the output error parameter from the basic_iconv constructor to know of failure, or not pass in the
output error parameter and instead take one of a assert, thrown exception, or abort (preferred invocation in that order).

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_iconv : public ztd::text::basic_no_encoding<_CodeUnit, unicode_code_point>
An encoding which is templated on code unit and code point and provides access to the iconv library.

Remark

The type is created with a name and provides a conversion routine when used. Because it is all done at runtime,
it is considered a lossy conversion and thus requires prolific use of error handlers. If libiconv cannot be found,
this type will produce a hard error on use.

Template Parameters

• _CodeUnit – The code unit type.

• _CodePoint – The code point type.

1.8. API Reference 129

https://www.gnu.org/software/libiconv/

ztd.text, Release 0.0.0

Big5 Hong Kong Supplementary Character Set (HKSCS)

The Big5 encoding, with the Hong Kong Supplementary Character Set (HKSCS) included with it. This is the most
prevalent encoding besides GBK in use for Chinese languages (though there exist many subsets captured by other
variants and encodings that may use the same name).

Alias

constexpr basic_big5_hkscs<char> ztd::text::big5_hkscs = {}
An instance of basic_big5-hkscs for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_big5_hkscs
The Big5-HKSCS (Hong Kong Supplementary Character Set) encoding, standardized around 2001.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

Public Types

using code_unit = _CodeUnit
Shift-JIS is generally stored as minimum-8-bit values in a sequence.

using code_point = _CodePoint
Shift-JIS outputs Unicode Scalar Values.

using state = __txt_detail::__empty_state
Shift-JIS requires no state.

using is_decode_injective = std::true_type
Marks this encoding as injective for the decode portion of its encoding actions.

Public Functions

inline constexpr ztd::span<const code_unit, 1> replacement_code_units() const noexcept
A fixed-size 1-element span with the __code_point unit “?”.

130 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Decodes a single complete unit of information as __code_point points and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point uunits from.

• __output – [in] The output view to write __code_point points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Encodes a single complete unit of information as __code_point units and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point points from.

• __output – [in] The output view to write __code_point units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

1.8. API Reference 131

ztd.text, Release 0.0.0

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr std::size_t max_code_points = 2
The Shift-JIS encoding can put out at most 1 __code_point point per decoding action.

static constexpr std::size_t max_code_units = 2
The Shift-JIS encoding can put out at most 2 __code_point units per encoding action.

cuneicode_registry_encoding (In Progress)

This encoding is tied to the cuneicode library. The cuneicode library is a C library for validation, counting, and
transcoding between a fixed set of encodings, with an additional plug for arbitrary encodings that can be added at run-
time. This is in opposition to iconv, where additional encodings can only be added by-hand through recompiling the
code or hooking specific system configuration points.

cuneicode has a variable number of encodings it can be compiled with to support. States are pre-constructed in the
encoding itself and copied as necessary when encode_state or decode_states are being created to call the desired
conversion functions. The user can inspect the output error parameter from the cuneicode_registry_encoding
constructor to know of failure, or not pass in the output error parameter and instead take one of a assert, thrown
exception, or abort (preferred invocation in that order).

Encoding Scheme

The encoding_scheme template turns any encoding into a byte-based encoding capable of reading and writing those
bytes into and out of byte-value_type ranges. It prevents duplicating effort to read encodings as little endian or big
endian, allowing composition for any desired encoding to interface with e.g. a UTF-16 Big Endian blob of data coming
over a network or shared pipe.

Aliases

template<typename _Byte>

using ztd::text::basic_utf16_le = encoding_scheme<utf16_t, endian::little, _Byte>
A UTF-16 encoding, in Little Endian format, with inputs as a sequence of bytes.

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or uchar.

using ztd::text::utf16_le_t = basic_utf16_le<::std::byte>
A UTF-16 encoding, in Little Endian format, with inputs as a sequence of bytes.

template<typename _Byte>

using ztd::text::basic_utf16_be = encoding_scheme<utf16_t, endian::big, _Byte>
A UTF-16 encoding, in Big Endian format, with inputs as a sequence of bytes.

132 Chapter 1. Who Is This Library For?

https://ztdcuneicode.rtfd.io

ztd.text, Release 0.0.0

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or unsigned char.

using ztd::text::utf16_be_t = basic_utf16_be<::std::byte>
A UTF-16 encoding, in Big Endian format, with inputs as a sequence of bytes.

template<typename _Byte>

using ztd::text::basic_utf16_ne = encoding_scheme<utf16_t, endian::native, _Byte>
A UTF-16 encoding, in Native Endian format, with inputs as a sequence of bytes.

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or unsigned char.

using ztd::text::utf16_ne_t = basic_utf16_ne<::std::byte>
A UTF-16 encoding, in Native Endian format, with inputs as a sequence of bytes.

template<typename _Byte>

using ztd::text::basic_utf32_le = encoding_scheme<utf32_t, endian::little, _Byte>
A UTF-32 encoding, in Little Endian format, with inputs as a sequence of bytes.

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or unsigned char .

using ztd::text::utf32_le_t = basic_utf32_le<::std::byte>
A UTF-32 encoding, in Little Endian format, with inputs as a sequence of bytes.

template<typename _Byte>

using ztd::text::basic_utf32_be = encoding_scheme<utf32_t, endian::big, _Byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or unsigned char .

using ztd::text::utf32_be_t = basic_utf32_be<::std::byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

template<typename _Byte>

using ztd::text::basic_utf32_ne = encoding_scheme<utf32_t, endian::native, _Byte>
A UTF-32 encoding, in Native Endian format, with inputs as a sequence of bytes.

Template Parameters
_Byte – The byte type to use. Typically, this is std::byte or unsigned char .

using ztd::text::utf32_ne_t = basic_utf32_ne<::std::byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

1.8. API Reference 133

ztd.text, Release 0.0.0

Base Template

template<typename _Encoding, endian _Endian = endian::native, typename _Byte = ::std::byte>

class encoding_scheme : public __txt_detail::__is_unicode_encoding_es<encoding_scheme<_Encoding,
endian::native, ::std::byte>, unwrap_remove_cvref_t<_Encoding>>, private ebco<_Encoding>

Decomposes the provided Encoding type into a specific endianness (big, little, or native) to allow for a single
encoding type to be viewed in different ways.

Remark

For example, this can be used to construct a Big Endian UTF-16 by using
encoding_scheme<ztd::text::utf16_t, ztd::endian::big>. It can be made in-
teropable with unsigned char buffers rather than std::byte buffers by doing:
ztd::text::encoding_scheme<ztd::text::utf32_t, ztd::endian::native, unsigned char>.

Template Parameters

• _Encoding – The encoding type.

• _Endian – The endianess to use. Defaults to ztd::endian::native.

• _Byte – The byte type to use. Defaults to std::byte.

Public Types

using encoding_type = _Encoding
The encoding type. ///.

The encoding type that this scheme wraps.

using code_point = code_point_t<_UBaseEncoding>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using code_unit = _Byte
The individual units that result from an encode operation or are used as input to a decode operation.

Remark

Typically, this type is usually always some kind of byte type (unsigned char or std::byte or other
sizeof(obj) == 1 type)./

using decode_state = decode_state_t<_UBaseEncoding>
The state that can be used between calls to the decode function.

134 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

Even if the underlying encoding only has a single state type, we need to separate the two out in order to
generically handle all encodings. Therefore, the encoding_scheme will always have both encode_state
and decode_state.

using encode_state = encode_state_t<_UBaseEncoding>
The state that can be used between calls to the encode function.

Remark

Even if the underlying encoding only has a single state type, we need to separate the two out in order to
generically handle all encodings. Therefore, the encoding_scheme will always have both encode_state
and decode_state.

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<_UBaseEncoding>>
Whether or not the encode operation can process all forms of input into code point values.

Remark

Defers to what the underlying encoding_type does.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<_UBaseEncoding>>
Whether or not the decode operation can process all forms of input into code point values.

Remark

Defers to what the underlying encoding_type does.

Public Functions

encoding_scheme() = default
Default constructs a ztd::text::encoding_scheme.

template<typename _Arg0, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_Arg0>,
encoding_scheme> && !::std::is_same_v<remove_cvref_t<_Arg0>, ::std::in_place_t>>* = nullptr>
inline constexpr encoding_scheme(_Arg0 &&__arg0, _Args&&... __args)

noexcept(::std::is_nothrow_constructible_v<_UBaseEncoding, _Arg0,
_Args...>)

Constructs a ztd::text::encoding_scheme with the encoding object and any additional arguments.

Parameters

• __arg0 – [in] The first argument used to construct the stored encoding.

1.8. API Reference 135

ztd.text, Release 0.0.0

• __args – [in] Any additional arguments used to construct the stored encoding.

template<typename ..._Args>
inline constexpr encoding_scheme(::std::in_place_t, _Args&&... __args)

noexcept(::std::is_nothrow_constructible_v<_UBaseEncoding, _Args...>)
Constructs a ztd::text::encoding_scheme with the encoding object and any additional arguments.

Remark

If the provided encoding does not have a byte code_unit type, it is wrapped in an ztd::text::encoding_scheme
first.

Parameters
__args – [in] Any additional arguments used to construct the encoding in the erased storage.

encoding_scheme(const encoding_scheme&) = default
Cannot copy-construct a ztd::text::encoding_scheme object.

encoding_scheme &operator=(const encoding_scheme&) = default
Cannot copy-assign a ztd::text::encoding_scheme object.

encoding_scheme(encoding_scheme&&) = default
Move-constructs a ztd::text::encoding_scheme from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::encoding_scheme, except for destruction, is a violation and invokes Undefined Behavior
(generally, a crash).

encoding_scheme &operator=(encoding_scheme&&) = default
Move-assigns a ztd::text::encoding_scheme from the provided r-value reference.

Remark

This leaves the passed-in r-value reference without an encoding object. Calling any function on a moved-
fron ztd::text::encoding_scheme, except for destruction, is a violation and may invoke Undefined Behavior
(generally, a crash).

inline constexpr encoding_type &base() & noexcept
Retrives the underlying encoding object.

Returns
An l-value reference to the encoding object.

inline constexpr const encoding_type &base() const & noexcept
Retrives the underlying encoding object.

136 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
An l-value reference to the encoding object.

inline constexpr encoding_type &&base() && noexcept
Retrives the underlying encoding object.

Returns
An l-value reference to the encoding object.

template<typename _Unused = encoding_type, ::std::enable_if_t<is_code_units_replaceable_v<_Unused>>*
= nullptr>
inline constexpr decltype(auto) replacement_code_units() const noexcept

Returns, the desired replacement code units to use.

Remark

This is only callable if the function call exists on the wrapped encoding. It is broken down into a contiguous
view type formulated from bytes if the wrapped code unit types do not match.

template<typename _Unused = encoding_type, ::std::enable_if_t<is_code_points_replaceable_v<_Unused>>*
= nullptr>
inline constexpr decltype(auto) replacement_code_points() const noexcept

Returns the desired replacement code points to use.

Remark

Is only callable if the function call exists on the wrapped encoding.

template<typename _Unused = encoding_type,
::std::enable_if_t<is_code_units_maybe_replaceable_v<_Unused>>* = nullptr>
inline constexpr decltype(auto) maybe_replacement_code_units() const noexcept

Returns the desired replacement code units to use, or an empty optional-like type if there is nothing present.

Remark

This is only callable if the function call exists on the wrapped encoding. It is broken down into a contiguous
view type formulated from bytes if the wrapped code unit types do not match.

template<typename _Unused = encoding_type,
::std::enable_if_t<is_code_points_maybe_replaceable_v<_Unused>>* = nullptr>
inline constexpr decltype(auto) maybe_replacement_code_points() const noexcept

Returns the desired replacement code units to use.

Remark

This Is only callable if the function call exists on the wrapped encoding.

1.8. API Reference 137

ztd.text, Release 0.0.0

inline constexpr bool contains_unicode_encoding() const noexcept
Whether or not this encoding is some form of Unicode encoding.

template<typename _Result, typename _InputProgress, typename _OutputProgress,
::std::enable_if_t<is_input_error_skippable_v<const encoding_type&, _Result, const _InputProgress&, const
_OutputProgress&>>* = nullptr>
inline constexpr decltype(auto) skip_input_error(_Result &&__result) const noex-

cept(::ztd::text::is_nothrow_skip_input_error_v<const
encoding_type&, _Result, const _InputProgress&, const
_OutputProgress&>)

Skips any consecutive input errors in the encoded input, where possible.

Remark

This Is only callable if the function call exists on the wrapped encoding.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__s) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__s) const
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

138 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::std::size_t max_code_points = max_code_points_v<_UBaseEncoding>
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr const ::std::size_t max_code_units = (max_code_units_v<_UBaseEncoding> *
sizeof(_BaseCodeUnit)) / (sizeof(_Byte))

The maximum code units a single complete operation of encoding can produce.

static constexpr const ::ztd::text_encoding_id decoded_id = decoded_id_v<_UBaseEncoding>
The id representing the decoded text.

static constexpr const ::ztd::text_encoding_id encoded_id =
::ztd::to_byte_text_encoding_id(encoded_id_v<_UBaseEncoding>, _Endian,
sizeof(code_unit_t<_UBaseEncoding>))

The id representing the encoded text.

EUC-KR (Unified Hangul Code)

The Extended Unix Code (EUC) encoding for Korean (KR), for the Unified Hangul Code (UHC) variant. This is the
same encoding that is present for the WHATWG Encoding Specification.

1.8. API Reference 139

ztd.text, Release 0.0.0

Alias

constexpr basic_euc_kr_uhc<char> ztd::text::euc_kr_uhc = {}
An instance of euc_kr_uhc for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_euc_kr_uhc
The EUC-KR (Unified Hangul Code) encoding.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

Public Types

using code_unit = _CodeUnit
Shift-JIS is generally stored as minimum-8-bit values in a sequence.

using code_point = _CodePoint
Shift-JIS outputs Unicode Scalar Values.

using state = __txt_detail::__empty_state
Shift-JIS requires no state.

using is_decode_injective = std::true_type
Marks this encoding as injective for the decode portion of its encoding actions.

Public Functions

inline constexpr ztd::span<const code_unit, 1> replacement_code_units() const noexcept
A fixed-size 1-element span with the __code_point unit “?”.

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Decodes a single complete unit of information as __code_point points and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

140 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point uunits from.

• __output – [in] The output view to write __code_point points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Encodes a single complete unit of information as __code_point units and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point points from.

• __output – [in] The output view to write __code_point units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

1.8. API Reference 141

ztd.text, Release 0.0.0

Public Static Attributes

static constexpr std::size_t max_code_points = 1
The Shift-JIS encoding can put out at most 1 __code_point point per decoding action.

static constexpr std::size_t max_code_units = 2
The Shift-JIS encoding can put out at most 2 __code_point units per encoding action.

Execution

This is the locale-based, runtime encoding. It uses a number of compile-time and runtime heuristics to eventually be
resolved to an implementation-defined encoding. It is not required to work in constant expressions either: for this, use
ztd::text::literal, which represents the compile-time string (e.g. "my string") encoding.

Currently, the hierarchy of behaviors is like so:

• If the platform is MacOS, then it assumes this is UTF-8;

• Otherwise, if the cuneicode, then Cuneicode will be used.

Warning: The C Standard Library has many design defects in its production of code points, which may make it
unsuitable even if your C Standard Library recognizes certain locales (e.g., Big5-HKSCS). The runtime will always
attempt to load iconv if the definition is turned on, since it may do a better job than the C Standard Library’s
interfaces until C23.

Even if, on a given platform, it can be assumed to be a static encoding (e.g., Apple/MacOS where it al-
ways returns the “C” Locale but processes text as UTF-8), ztd::text::execution will always present it-
self as a runtime and unknowable encoding. This is to prevent portability issues from relying on, e.g.,
ztd::text::is_decode_injective_v<ztd::text::execution> being true during development and working
with that assumption, only to have it break when ported to a platform where that assumption no longer holds.

Aliases

constexpr execution_t ztd::text::execution = {}
An instance of the execution_t type for ease of use.

class execution_t : public ztd::text::basic_no_encoding<char, unicode_code_point>
The Encoding that represents the “Execution” (narrow locale-based) encoding. The encoding is typically asso-
ciated with the locale, which is tied to the C standard library’s setlocale function.

Remark

Use of this type is subject to the C Standard Library or platform defaults. Some locales (such as the Big5
Hong King Supplementary Character Set (Big5-HKSCS)) are broken due to fundamental design issues in the
C Standard Library and bugs in glibc/musl libc’s current locale encoding support. On Apple, this is cuurrently
assumed to be UTF-8 since they do not support the <cuchar> or <uchar.h> headers.

142 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Internal Types

Warning: Names with double underscores, and within the __*detail and __*impl namespaces are reserved
for the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any
point in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

MacOS-based

class __execution_mac_os : private __utf8_with<__execution_mac_os, char, ztd_char32_t>
The default (“locale”) encoding for Mac OS.

Remark

Note that for all intents and purposes, Mac OS demands that all text is in UTF-8. However, on Big Sur, Catalina,
and a few other platforms locale functionality and data has been either forgotten/left behind or intentionally kept
in place on these devices. It may be possible that with very dedicated hacks one can still change the desired
default encoding from UTF-8 to something else in the majority of Apple text. Their documentation states that
all text “should” be UTF-8, but very explicitly goes out of its way to not make that hard guarantee. Since it is a
BSD-like system and they left plenty of that data behind from C libraries, this may break in extremely obscure
cases. Please be careful on Apple machines!

Public Types

using code_point = code_point_t<__base_t>
The code point type that is decoded to, and encoded from.

using code_unit = code_unit_t<__base_t>
The code unit type that is decoded from, and encoded to.

using decode_state = decode_state_t<__base_t>
The associated state for decode operations.

using encode_state = encode_state_t<__base_t>
The associated state for encode operations.

using is_unicode_encoding = ::std::integral_constant<bool, is_unicode_encoding_v<__base_t>>
Whether or not this encoding is a unicode encoding or not.

using is_decode_injective = ::std::false_type
Whether or not this encoding’s decode_one step is injective or not.

using is_encode_injective = ::std::false_type
Whether or not this encoding’s encode_one step is injective or not.

1.8. API Reference 143

ztd.text, Release 0.0.0

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = 8
The maximum code units a single complete operation of encoding can produce.

Remark

144 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

There are encodings for which one input can produce 3 code points (some Tamil encodings) and there
are rumours of an encoding that can produce 7 code points from a handful of input. We use a protec-
tive/conservative 8, here, to make sure ABI isn’t broken later.

static constexpr ::std::size_t max_code_units = MB_LEN_MAX
The maximum number of code points a single complete operation of decoding can produce.

Remark

This is bounded by the platform’s MB_LEN_MAXmacro, which is an integral constant expression representing
the maximum value of output all C locales can produce from a single complete operation.

Private Static Functions

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

1.8. API Reference 145

ztd.text, Release 0.0.0

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

GB18030

An encoding capable of handling all known Unicode-encoded characters, and occasionally a few more (the most recent
version of Unicode covers all values available in the most up-to-date GB-18030).

Alias

constexpr basic_gb18030<char> ztd::text::gb18030 = {}
An instance of basic_gb18030 for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_gb18030 : public __basic_gb18030<basic_gb18030<char, unicode_code_point>, char,
unicode_code_point, false>

The GB18030 encoding, which can encode all of Unicode (and occasionally adds characters that exist outside of
Unicode, but are still Unicode-compatible).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

146 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using code_unit = char
Shift-JIS is generally stored as minimum-8-bit values in a sequence.

using code_point = unicode_code_point
Shift-JIS outputs Unicode Scalar Values.

using state = __txt_detail::__empty_state
Shift-JIS requires no state.

using is_decode_injective = ::std::true_type
Marks this encoding as injective for the decode portion of its encoding actions.

using is_encode_injective = ::std::integral_constant<bool, !_IsGbk>
Marks this encoding as injective for the encode portion of its encoding actions. This is true for GB18030,
and not true for pure GBK.

using is_unicode_encoding = ::std::integral_constant<bool, !_IsGbk>
GB18030-style encodings are Unicode Encodings (can encode all Unicode code points). GBK cannot.

Public Functions

inline constexpr ztd::span<const code_unit, _IsGbk ? 1 : 4> replacement_code_units() const noexcept
A fixed-size replacement for either the GBK or GB18030 encoding.

inline constexpr ztd::span<const code_point, 1> replacement_code_points() const noexcept
A fixed-size replacement for either the GBK or GB18030 encoding.

Public Static Functions

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__state) noexcept

Decodes a single complete unit of information as __code_point points and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point uunits from.

1.8. API Reference 147

ztd.text, Release 0.0.0

• __output – [in] The output view to write __code_point points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__state) noexcept

Encodes a single complete unit of information as __code_point units and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point points from.

• __output – [in] The output view to write __code_point units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr std::size_t max_code_points
The Shift-JIS encoding can put out at most 1 code_point units per decoding action.

static constexpr std::size_t max_code_units
The Shift-JIS encoding can put out at most 4 code_point units per encoding action.

148 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

GBK

A legacy encoding typically for Chinese languages.

Alias

constexpr basic_gbk<char> ztd::text::gbk = {}
An instance of basic_gbk for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_gbk : public __basic_gb18030<basic_gbk<char, unicode_code_point>, char, unicode_code_point, true>
The single-byte GBK encoding, primarily for use with Chinese text.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

Public Types

using code_unit = char
Shift-JIS is generally stored as minimum-8-bit values in a sequence.

using code_point = unicode_code_point
Shift-JIS outputs Unicode Scalar Values.

using state = __txt_detail::__empty_state
Shift-JIS requires no state.

using is_decode_injective = ::std::true_type
Marks this encoding as injective for the decode portion of its encoding actions.

using is_encode_injective = ::std::integral_constant<bool, !_IsGbk>
Marks this encoding as injective for the encode portion of its encoding actions. This is true for GB18030,
and not true for pure GBK.

using is_unicode_encoding = ::std::integral_constant<bool, !_IsGbk>
GB18030-style encodings are Unicode Encodings (can encode all Unicode code points). GBK cannot.

1.8. API Reference 149

ztd.text, Release 0.0.0

Public Functions

inline constexpr ztd::span<const code_unit, _IsGbk ? 1 : 4> replacement_code_units() const noexcept
A fixed-size replacement for either the GBK or GB18030 encoding.

inline constexpr ztd::span<const code_point, 1> replacement_code_points() const noexcept
A fixed-size replacement for either the GBK or GB18030 encoding.

Public Static Functions

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__state) noexcept

Decodes a single complete unit of information as __code_point points and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point uunits from.

• __output – [in] The output view to write __code_point points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__state) noexcept

Encodes a single complete unit of information as __code_point units and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

150 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] The input view to read __code_point points from.

• __output – [in] The output view to write __code_point units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr std::size_t max_code_points
The Shift-JIS encoding can put out at most 1 code_point units per decoding action.

static constexpr std::size_t max_code_units
The Shift-JIS encoding can put out at most 4 code_point units per encoding action.

Literal

The literal encoding handles C and C++ string literals ("") used at compile time and stored in the binary. The
library uses a number of heuristics to determine with any degree of certainty what the encoding of string literals are,
but in some cases it is not explicitly possible to achieve this goal.

If the library cannot figure out the literal encoding, the code will typically error with a static_assert, loudly, that it
cannot use the functions on the type when you attempt to do anything with them because it may mangle whatever input
or output you are expecting.

If you know the encoding of literals for your project (you provide the command line switch, or similar), then you can
define a configuration macro named ZTD_CXX_COMPILE_TIME_ENCODING_NAME to be a string literal of your
type, such as "UTF-8" or "ISO-8859-1".

If the library does not recognize the encoding and cannot transcode it properly, it will also loudly warn you that it does
not understand the encoding of the literal (in which case, file an issue about it and we will add it to the list of acceptable
literal encodings).

If you like to live dangerously and do not care for the warnings, you can define a configuration macro named
ZTD_TEXT_YES_PLEASE_DESTROY_MY_LITERALS_UTTERLY_I_MEAN_IT and it will just blindly go with what-
ever weird default it ended up deciding on.

(This is usually a catastrophically terrible idea, but let is not be said that we didn’t give you the power to do great things,
even if it cost you your foot.)

1.8. API Reference 151

ztd.text, Release 0.0.0

Alias

constexpr literal_t ztd::text::literal = {}
An instance of the literal_t type for ease of use.

Base Type

class literal_t : public __literal
The encoding of string literal_ts (e.g. "") at compile time.

Public Types

using is_unicode_encoding = ::std::integral_constant<bool,
is_unicode_encoding_id(__txt_detail::__literal_id)>

Whether or not this literal_t encoding is a Unicode Transformation Format, such as UTF-8, UTF-EBCDIC,
or GB18030.

using code_unit = code_unit_t<__base_t>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = code_point_t<__base_t>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using encode_state = encode_state_t<__base_t>
The state that can be used between calls to encode_one.

using decode_state = decode_state_t<__base_t>
The state that can be used between calls to decode_one.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<__base_t>>
Whether or not the decode operation can process all forms of input into code point values.

Remark

The decode step should always be injective because every encoding used for literal_ts in C++ needs to be
capable of being represented by UCNs. Whether or not a platform is a jerk, who knows?

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<__base_t>>
Whether or not the encode operation can process all forms of input into code unit values.

Remark

152 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This is absolutely not guaranteed to be the case, and as such we must check the provided encoding name
for us to be sure.

Public Functions

constexpr literal_t() noexcept = default
Default constructs a ztd::text::literal.

constexpr literal_t(const literal_t&) noexcept = default
Copy constructs a ztd::text::literal.

constexpr literal_t(literal_t&&) noexcept = default
Move constructs a ztd::text::literal.

constexpr literal_t &operator=(const literal_t&) noexcept = default
Copy assigns into a ztd::text::literal_t object.

constexpr literal_t &operator=(literal_t&&) noexcept = default
Move assigns into a ztd::text::literal_t object.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__state) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__state) const

1.8. API Reference 153

ztd.text, Release 0.0.0

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::ztd::text_encoding_id decoded_id = decoded_id_v<__base_t>
The id representing the decoded text.

static constexpr const ::ztd::text_encoding_id encoded_id = encoded_id_v<__base_t>
The id representing the encoded text.

static constexpr ::std::size_t max_code_points = 16
The maximum number of code points a single complete operation of decoding can produce.

static constexpr ::std::size_t max_code_units = 32
The maximum code units a single complete operation of encoding can produce.

Modified UTF-8

Modified Unicode Transformation Format 8 (MUTF-8) is a UTF-8 format employed by some Android components and
other ecosystems. It’s special property is that it encodes the NULL character in C-style strings ('\0') as an overlong
sequence. This is normally illegal in UTF-8, but allowed here to allow easier interoperation with these systems.

154 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Aliases

constexpr mutf8_t ztd::text::mutf8 = {}
An instance of the MUTF-8 type for ease of use.

using ztd::text::mutf8_t = basic_mutf8<uchar8_t>
A Modified UTF-8 Encoding that traffics in char8_t. See ztd::text::basic_mutf8 for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_mutf8 : public __utf8_with<basic_mutf8<_CodeUnit, unicode_code_point>, _CodeUnit,
unicode_code_point, __txt_detail::__empty_state, __txt_detail::__empty_state, true, false, true>

A Modified UTF-8 Encoding that traffics in, specifically, the desired code unit type provided as a template
argument.

Remark

This type as a maximum of 6 input code points and a maximum of 1 output code point. Null values are encoded
as an overlong sequence to specifically avoid problems with C-style strings, which is useful for working with
bad implementations sitting on top of POSIX or other Operating System APIs. For a strict, Unicode-compliant
UTF-8 Encoding, see ztd::text::basic_utf8 .

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodePoint – The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using self_synchronizing_code = ::std::true_type
The start of a sequence can be found unambiguously when dropped into the middle of a sequence or after
an error in reading as occurred for encoded text.

Remark

Unicode has definitive bit patterns which resemble start and end sequences. The bit pattern 0xxxxxxx
indicates a lone bit, and 1xxxxxx indicates a potential start bit for UTF-8. In particular, if 0 is not the first
bit, it must be a sequence of 1s followed immediately by a 0 (e.g., 10xxxxxx, 110xxxxx, 1110xxxx, or
11110xxx).

1.8. API Reference 155

ztd.text, Release 0.0.0

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 3> replacement_code_units() noexcept
Returns the replacement code units to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr ::ztd::span<const code_point, 1> replacement_code_points() noexcept
Returns the replacement code point to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr auto skip_input_error(decode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence to modify through the result type.

Remark

This will skip every input value until a proper starting byte is found.

static inline constexpr auto skip_input_error(encode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

156 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-32 unicode scalar value (or code point) is found.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

1.8. API Reference 157

ztd.text, Release 0.0.0

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

static constexpr ::ztd::text_encoding_id encoded_id
The encoding ID for this type. Used for optimization purposes.

static constexpr ::ztd::text_encoding_id decoded_id
The encoding ID for this type. Used for optimization purposes.

PETSCII (Shifted & Unshifted, Combined) / CBM ASCII

PET Standard Code of Information Interchange (PETSCII) was used for Commodore Business Machines and then
moved into other Commodore machines (and adjacent machines). It has a “shifted” version (when the shift key was
held) and an “unshifted” version (when the shift key was not being held).

The state object for this encoding contains an enumeration that allows the user to select the shifted or unshifted versions
at-will.

Aliases

class petscii_state
The state associated with an ongoing PETSCII encoding operation.

enum class ztd::text::petscii_shift
The current shift state of a PETSCII encoding object and it’s associated state during an encoding operation.

Values:

enumerator unshifted
The SHIFT button is not pressed, and character codes should be interpreted as not being “shifted”.

158 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

enumerator shifted
The SHIFT button is pressed, and character codes should be interpreted as being “shifted”.

constexpr basic_petscii<char> ztd::text::petscii = {}
An instance of basic_petscii for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_petscii
The encoding that matches the PETSCII (CBM ASCII) encoding specification, for shifted characters (when the
SHIFT button was pressed on a PET/CBM device).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

punycode

Punycode is an encoding that turns Unicode-encoded text into a sequence of ASCII code units, making it readily
inspectable by simple systems and human eyes to see differences between text even if confusable characters are used
in the Unicode text.

It is most frequently used in the Internationalized Domain Name in Applications system, specifically for DNS purposes.
Despite it’s unfriendliness to stream-based, one-at-a-time interfaces, sufficiently heap-based state allows encoding and
decoding in a useful manner.

It is also used as Rust’s choice encoding for its symbol names when stored in binary form for use with any given
platform’s library/executable’s linker and loader.

Aliases

constexpr punycode_t ztd::text::punycode = punycode_t{}
A preexisting object of type ztd::text::punycode_t for ease-of-use.

constexpr punycode_idna_t ztd::text::punycode_idna = punycode_idna_t{}
A preexisting object of type ztd::text::punycode_idna_t for ease-of-use.

using ztd::text::punycode_t = basic_punycode<char, unicode_code_point>
A ztd::text::basic_any_punycode type using char and ztd::text::unicode_code_point.

using ztd::text::punycode_idna_t = basic_punycode_idna<char, unicode_code_point>
A ztd::text::basic_any_punycode type using char and ztd::text::unicode_code_point.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

1.8. API Reference 159

ztd.text, Release 0.0.0

using ztd::text::basic_punycode = basic_any_punycode<idna::no, _CodeUnit, _CodePoint>
A convenience typedef for ztd::text::basic_any_punycode with the ztd::text::idna::no provided.

Template Parameters

• _CodeUnit – The code unit type for encoded text.

• _CodePoint – The code point type for decoded text.

template<typename _CodeUnit, typename _CodePoint>

using ztd::text::basic_punycode_idna = basic_any_punycode<idna::yes, _CodeUnit, _CodePoint>
A convenience typedef for ztd::text::basic_any_punycode with the ztd::text::idna::yes provided.

Template Parameters

• _CodeUnit – The code unit type for encoded text.

• _CodePoint – The code point type for decoded text.

Base Template

template<idna _IsIdna, typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_any_punycode : public __fixed_cuneicode<basic_any_punycode<_IsIdna, char, unicode_code_point>,
char, unicode_code_point, 1, 1, decltype(_IsIdna == idna::yes ? &::cnc_mcnrtoc32n_punycode_idna :
&::cnc_mcnrtoc32n_punycode), (_IsIdna == idna::yes ? &::cnc_mcnrtoc32n_punycode_idna :
&::cnc_mcnrtoc32n_punycode), decltype(_IsIdna == idna::yes ? &::cnc_c32nrtomcn_punycode_idna :
&::cnc_c32nrtomcn_punycode), (_IsIdna == idna::yes ? &::cnc_c32nrtomcn_punycode_idna :
&::cnc_c32nrtomcn_punycode), cnc_pny_decode_state_t, decltype(&::cnc_pny_decode_state_is_complete),
&::cnc_pny_decode_state_is_complete, cnc_pny_encode_state_t, decltype(&::cnc_pny_encode_state_is_complete),
&::cnc_pny_encode_state_is_complete, true, true, char, ztd_char32_t>

The punycode encoding, as envisioned by RFC 3492 and (potentially) influenced by IDNA (RFC 5890).

Remark

See https://datatracker.ietf.org/doc/html/rfc5890 and https://datatracker.ietf.org/doc/html/rfc3492.

Template Parameters

• _IsIdna – Whether or not this punycode type looks for IDNA prefixes and obeys its encoding
rules.

• _CodeUnit – The code unit type for the encoded ASCII text.

• _CodePoint – The code point type for the Unicode Code Point decoded text.

160 Chapter 1. Who Is This Library For?

https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc3492

ztd.text, Release 0.0.0

Public Types

using code_unit = char
The code unit type for encoded text.

using code_point = unicode_code_point
The code point type for decoded text.

using is_decode_injective = ::std::integral_constant<bool, _IsDecodeInjective>
The whether or not the decode portion of this encoding is injective.

using is_encode_injective = ::std::integral_constant<bool, _IsEncodeInjective>
The whether or not the decode portion of this encoding is injective.

Public Static Functions

static inline auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler &&__error_handler,
decode_state &__state) noexcept

Decodes a provided range of punycode-encoded data and pulls out data.

Remark

This function may need to be called with empty input data repeatedly to fully drain any stored information
in the provided __state. The entire input may be consumed before any information is output.

Template Parameters

• _Input – The input range type.

• _Output – The output range type.

• _ErrorHandler – The error handler type.

Parameters

• __input – The input range.

• __output – The output range.

• __error_handler – The error handler; this will be called whenever an error occurs during
decoding.

• __state – A reference to the decode state, which contains most of the running information
about a punycode decoding operation. Discarding this between calls is not advised for this
encoding type.

Returns
A ztd::text::decode_result structure with the appropriate input and output types recosntructed,
possibly filtered through an error handler if necessary.

1.8. API Reference 161

ztd.text, Release 0.0.0

static inline auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler &&__error_handler,
encode_state &__state)

Encodes a provided range of punycode-encoded data and pulls out data.

Remark

This function may need to be called with empty input data repeatedly to fully drain any stored information
in the provided __state. The entire input may be consumed before any information is output.

Template Parameters

• _Input – The input range type.

• _Output – The output range type.

• _ErrorHandler – The error handler type.

Parameters

• __input – The input range.

• __output – The output range.

• __error_handler – The error handler; this will be called whenever an error occurs during
decoding.

• __state – A reference to the encode state, which contains most of the running information
about a punycode decoding operation. Discarding this between calls is not advised for this
encoding type.

Returns
A ztd::text::encode_result structure with the appropriate input and output types recosntructed,
possibly filtered through an error handler if necessary.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points output by a decode operation. In this case, only 1 code point is output
at a time.

static constexpr ::std::size_t max_code_units
The maximum number of code units output by a encode operation. In this case, only 1 code unit is output
at a time.

162 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

SHIFT-JISX0208

The version of SHIFT-JIS that corresponds to standard X0208, one of the more prevalent versions.

Note that many versions of SHIFT-JIS do not correspond to one standard and often have different interpretations or
characteristics. The communities which use them label them, indiscriminately, as SHIFT-JIS without any kind of
specific indicator or even out-of-band modifier. The text community surrounding this is, with all due respect, one
gigantic mess. Most industry professionals inside and outside of Japan dealing with such text tend to gravitate towards
the SHIFT-JISX0208 release, and simply use replacement characters / invalid indicators for such input text.

As such, it is advisable to perhaps attempt to find some out-of-band data to see if a specific data is, indeed, meant to
be SHIFT-JISX0208.

Aliases

constexpr basic_shift_jis_x0208<char> ztd::text::shift_jis_x0208 = {}
An instance of basic_shift_jis_x0208 for ease of use.

constexpr auto &ztd::text::shift_jis = shift_jis_x0208
An instance of basic_shift_jis for ease of use.

using ztd::text::shift_jis_t = basic_shift_jis_x0208<char>
A convenience alais that defaults shift_jis to the x0208 version.

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

using ztd::text::basic_shift_jis = basic_shift_jis_x0208<_CodeUnit, _CodePoint>
A convenience alais that defaults basic_shift_jis to the x0208 version.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_shift_jis_x0208
The Shift-JIS Encoding (with extensions x0208) for use with most Shift-JIS applications. Identical version of
what is a part of the WHATWG encoding standard for Shift-JIS.

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodePoint – The code point type to use.

1.8. API Reference 163

ztd.text, Release 0.0.0

Public Types

using code_unit = _CodeUnit
Shift-JIS is generally stored as minimum-8-bit values in a sequence.

using code_point = _CodePoint
Shift-JIS outputs Unicode Scalar Values.

using state = __txt_detail::__empty_state
Shift-JIS requires no state.

using is_decode_injective = std::true_type
Marks this encoding as injective for the decode portion of its encoding actions.

Public Functions

inline constexpr ztd::span<const code_unit, 1> replacement_code_units() const noexcept
A fixed-size 1-element span with the __code_point unit “?”.

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Decodes a single complete unit of information as __code_point points and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point uunits from.

• __output – [in] The output view to write __code_point points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

164 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__state) noexcept
Encodes a single complete unit of information as __code_point units and produces a result with the input
and output ranges moved past what was successfully read and written; or, produces an error and returns the
input and output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read __code_point points from.

• __output – [in] The output view to write __code_point units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr std::size_t max_code_points = 1
The Shift-JIS encoding can put out at most 1 __code_point point per decoding action.

static constexpr std::size_t max_code_units = 2
The Shift-JIS encoding can put out at most 2 __code_point units per encoding action.

Single-byte Encodings / Lookup Encodings

These encodings are single-byte encodings that contain no inherent complexity and are driven by high-bit-1, 8-bit
lookup tables or direct 8-bit lookup tables. They are all listed below for brevity.

1.8. API Reference 165

ztd.text, Release 0.0.0

Known Encodings

constexpr basic_atari_st<char> ztd::text::atari_st = {}
An instance of basic_atari_st for ease of use.

constexpr basic_atascii<char> ztd::text::atascii = {}
An instance of basic_atascii for ease of use.

constexpr basic_ibm_424_hebrew_bulletin<char> ztd::text::ibm_424_hebrew_bulletin = {}
An instance of basic_ibm_8_424ebrew for ease of use.

constexpr basic_ibm_856_hebrew<char> ztd::text::ibm_856_hebrew = {}
An instance of basic_ibm_856_hebrew for ease of use.

constexpr basic_ibm_866_cyrillic<char> ztd::text::ibm_866_cyrillic = {}
An instance of basic_ibm_866_cyrillic for ease of use.

constexpr basic_ibm_1006_urdu<char> ztd::text::ibm_1006_urdu = {}
An instance of basic_ibm_1006_urdu for ease of use.

constexpr basic_iso_8859_1_1985<char> ztd::text::iso_8859_1_1985 = {}
An instance of basic_iso_8859_1_1985 for ease of use.

constexpr basic_iso_8859_1_1998<char> ztd::text::iso_8859_1_1998 = {}
An instance of basic_iso_8859_1_1998 for ease of use.

constexpr basic_iso_8859_1<char> ztd::text::iso_8859_1 = {}
An instance of the basic_iso_8859_1 type for ease of use.

constexpr basic_iso_8859_2<char> ztd::text::iso_8859_2 = {}
An instance of basic_iso_8859_2 for ease of use.

constexpr basic_iso_8859_3<char> ztd::text::iso_8859_3 = {}
An instance of basic_iso_8859_3 for ease of use.

constexpr basic_iso_8859_4<char> ztd::text::iso_8859_4 = {}
An instance of basic_iso_8859_4 for ease of use.

constexpr basic_iso_8859_5<char> ztd::text::iso_8859_5 = {}
An instance of basic_iso_8859_5 for ease of use.

constexpr basic_iso_8859_6<char> ztd::text::iso_8859_6 = {}
An instance of basic_iso_8859_6 for ease of use.

166 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr basic_iso_8859_7<char> ztd::text::iso_8859_7 = {}
An instance of basic_iso_8859_7 for ease of use.

constexpr basic_iso_8859_8<char> ztd::text::iso_8859_8 = {}
An instance of basic_iso_8859_8for ease of use.

constexpr basic_iso_8859_10<char> ztd::text::iso_8859_10 = {}
An instance of basic_iso_8859_10 for ease of use.

constexpr basic_iso_8859_13<char> ztd::text::iso_8859_13 = {}
An instance of basic_iso_8859_13 for ease of use.

constexpr basic_iso_8859_14<char> ztd::text::iso_8859_14 = {}
An instance of basic_iso_8859_14 for ease of use.

constexpr basic_iso_8859_15<char> ztd::text::iso_8859_15 = {}
An instance of basic_iso_8859_15 for ease of use.

constexpr basic_iso_8859_16<char> ztd::text::iso_8859_16 = {}
An instance of basic_iso_8859_16 for ease of use.

constexpr basic_kamenicky<char> ztd::text::kamenicky = {}
An instance of basic_kamenicky for ease of use.

constexpr basic_kazakh_strk1048<char> ztd::text::kazakh_strk1048 = {}
An instance of basic_kazakh_strk1048 for ease of use.

constexpr basic_koi8_r<char> ztd::text::koi8_r = {}
An instance of basic_koi8_r for ease of use.

constexpr basic_koi8_u<char> ztd::text::koi8_u = {}
An instance of basic_koi8_ufor ease of use.

constexpr basic_petscii_unshifted<char> ztd::text::petscii_unshifted = {}
An instance of basic_petscii_unshifted for ease of use.

constexpr basic_petscii_shifted<char> ztd::text::petscii_shifted = {}
An instance of basic_petscii_shifted for ease of use.

constexpr basic_tatar_ansi<char> ztd::text::tatar_ansi = {}
An instance of basic_tatar_ansi for ease of use.

constexpr basic_tatar_ascii<char> ztd::text::tatar_ascii = {}
An instance of basic_tatar_ascii for ease of use.

1.8. API Reference 167

ztd.text, Release 0.0.0

constexpr basic_windows_437_dos_latin_us<char> ztd::text::windows_437_dos_latin_us = {}
An instance of basic_windows_437_dos_latin_us for ease of use.

constexpr basic_windows_865_dos_nordic<char> ztd::text::windows_865_dos_nordic = {}
An instance of basic_windows_865_dos_nordic for ease of use.

constexpr basic_windows_874<char> ztd::text::windows_874 = {}
An instance of basic_windows_874 for ease of use.

constexpr basic_windows_1251<char> ztd::text::windows_1251 = {}
An instance of windows_1251 for ease of use.

constexpr basic_windows_1252<char> ztd::text::windows_1252 = {}
An instance of basic_windows_1252 for ease of use.

constexpr basic_windows_1253<char> ztd::text::windows_1253 = {}
An instance of basic_windows_1253 for ease of use.

constexpr basic_windows_1254<char> ztd::text::windows_1254 = {}
An instance of basic_windows_1254 for ease of use.

constexpr basic_windows_1255<char> ztd::text::windows_1255 = {}
An instance of basic_windows_1255 for ease of use.

constexpr basic_windows_1256<char> ztd::text::windows_1256 = {}
An instance of basic_windows_1256 for ease of use.

constexpr basic_windows_1257<char> ztd::text::windows_1257 = {}
An instance of basic_windows_1257 for ease of use.

constexpr basic_windows_1258<char> ztd::text::windows_1258 = {}
An instance of basic_windows_1258 for ease of use.

Base Templates

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_atascii : public __single_byte_lookup_encoding<basic_atascii<char, unicode_code_point>,
&::ztd::et::atascii_index_to_code_point, &::ztd::et::atascii_code_point_to_index, char, unicode_code_point>

Template Parameters

• _CodeUnit –

• _CodePoint –

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

168 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

class basic_atari_st : public __single_byte_lookup_encoding<basic_atari_st<char, unicode_code_point>,
&::ztd::et::atari_st_index_to_code_point, &::ztd::et::atari_st_code_point_to_index, char, unicode_code_point>

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_ibm_424_hebrew_bulletin : public
__single_byte_lookup_encoding<basic_ibm_424_hebrew_bulletin<char, unicode_code_point>,
&::ztd::et::ibm_424_hebrew_bulletin_index_to_code_point,
&::ztd::et::ibm_424_hebrew_bulletin_code_point_to_index, char, unicode_code_point>

The Hebrew encoding that matches IBM’s Codepage 424.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_ibm_856_hebrew : public __single_byte_lookup_encoding<basic_ibm_856_hebrew<char,
unicode_code_point>, &::ztd::et::ibm_856_hebrew_index_to_code_point,
&::ztd::et::ibm_856_hebrew_code_point_to_index, char, unicode_code_point>

The Hebrew encoding that matches IBM’s Codepage 856.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_ibm_866_cyrillic : public
__single_ascii_byte_high_bit_lookup_encoding<basic_ibm_866_cyrillic<char, unicode_code_point>,
&::ztd::et::ibm_866_cyrillic_index_to_code_point, &::ztd::et::ibm_866_cyrillic_code_point_to_index, char,
unicode_code_point>

The Cyrillic encoding that matches IBM’s Codepage 866.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_ibm_1006_urdu : public __single_byte_lookup_encoding<basic_ibm_1006_urdu<char,
unicode_code_point>, &::ztd::et::ibm_1006_urdu_index_to_code_point,
&::ztd::et::ibm_1006_urdu_code_point_to_index, char, unicode_code_point>

The Urdu encoding that matches IBM’s Codepage 1006.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

1.8. API Reference 169

ztd.text, Release 0.0.0

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_1_1985 : public __single_byte_lookup_encoding<basic_iso_8859_1_1985<char,
unicode_code_point>, &::ztd::et::iso_8859_1_1985_index_to_code_point,
&::ztd::et::iso_8859_1_1985_code_point_to_index, char, unicode_code_point>

The encoding that matches ISO/IEC 8859-1 specification published in 1985.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_1_1998 : public __single_byte_lookup_encoding<basic_iso_8859_1_1998<char,
unicode_code_point>, &::ztd::et::iso_8859_1_1998_index_to_code_point,
&::ztd::et::iso_8859_1_1998_code_point_to_index, char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-1 encoding specification published in the year 1998.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_iso_8859_1
The ISO/IEC 8859-1 encoding, occasionally referred to as Latin-1 (erroneously). Matches Unicode’s encoding
of the first 256 bytes one-to-one.

Template Parameters

• _CodeUnit – The code unit type to work over.

• _CodePoint – The code point type to work over.

Public Types

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. This is empty for this encoding.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values.

Remark

170 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

ISO/IEC 8859-1 can decode from its 8-bit (unpacked) code units to Unicode Code Points. Since the con-
verion is lossless, this property is true.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code unit values. This is not true
for ISO/IEC 8859-1, as many Unicode Code Point and Unicode Scalar Values cannot be represented in
ISO/IEC 8859-1. Since the conversion is lossy, this property is false.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 1> replacement_code_units() noexcept
A range of code units representing the values to use when a replacement happen. For ISO/IEC 8859-1, this
must be ‘?’ instead of the usual Unicode Replacement Character U’’.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

1.8. API Reference 171

ztd.text, Release 0.0.0

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::std::size_t max_code_units = 1
The maximum code units a single complete operation of encoding can produce.

static constexpr const ::std::size_t max_code_points = 1
The maximum number of code points a single complete operation of decoding can produce.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_2 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_2<char,
unicode_code_point>, &::ztd::et::iso_8859_2_index_to_code_point, &::ztd::et::iso_8859_2_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-2 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_3 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_3<char,
unicode_code_point>, &::ztd::et::iso_8859_3_index_to_code_point, &::ztd::et::iso_8859_3_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-3 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

172 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

class basic_iso_8859_4 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_4<char,
unicode_code_point>, &::ztd::et::iso_8859_4_index_to_code_point, &::ztd::et::iso_8859_4_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-4 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_5 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_5<char,
unicode_code_point>, &::ztd::et::iso_8859_5_index_to_code_point, &::ztd::et::iso_8859_5_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-5 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_6 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_6<char,
unicode_code_point>, &::ztd::et::iso_8859_6_index_to_code_point, &::ztd::et::iso_8859_6_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-6 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_7 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_7<char,
unicode_code_point>, &::ztd::et::iso_8859_7_index_to_code_point, &::ztd::et::iso_8859_7_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-7 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_8 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_8<char,
unicode_code_point>, &::ztd::et::iso_8859_8_index_to_code_point, &::ztd::et::iso_8859_8_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-8 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

1.8. API Reference 173

ztd.text, Release 0.0.0

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_10 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_10<char,
unicode_code_point>, &::ztd::et::iso_8859_10_index_to_code_point, &::ztd::et::iso_8859_10_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-10 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_13 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_13<char,
unicode_code_point>, &::ztd::et::iso_8859_13_index_to_code_point, &::ztd::et::iso_8859_13_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-15 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_14 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_14<char,
unicode_code_point>, &::ztd::et::iso_8859_14_index_to_code_point, &::ztd::et::iso_8859_14_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-14 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_15 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_15<char,
unicode_code_point>, &::ztd::et::iso_8859_15_index_to_code_point, &::ztd::et::iso_8859_15_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-15 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_iso_8859_16 : public __single_ascii_byte_high_bit_lookup_encoding<basic_iso_8859_16<char,
unicode_code_point>, &::ztd::et::iso_8859_16_index_to_code_point, &::ztd::et::iso_8859_16_code_point_to_index,
char, unicode_code_point>

The encoding that matches the ISO/IEC 8859-116 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

174 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_kamenicky : public __single_byte_lookup_encoding<basic_kamenicky<char, unicode_code_point>,
&::ztd::et::kamenicky_index_to_code_point, &::ztd::et::kamenicky_code_point_to_index, char,
unicode_code_point>

The encoding that matches the KAMENICKY encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_kazakh_strk1048 : public __single_byte_lookup_encoding<basic_kazakh_strk1048<char,
unicode_code_point>, &::ztd::et::kazakh_strk1048_index_to_code_point,
&::ztd::et::kazakh_strk1048_code_point_to_index, char, unicode_code_point>

The encoding that matches the KZ1048 / Kazakh STRK-1048 encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_koi8_r : public __single_ascii_byte_high_bit_lookup_encoding<basic_koi8_r<char,
unicode_code_point>, &::ztd::et::koi8_r_index_to_code_point, &::ztd::et::koi8_r_code_point_to_index, char,
unicode_code_point>

The encoding that matches the KOI-8-R (Russian) Cyrillic encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_koi8_u : public __single_ascii_byte_high_bit_lookup_encoding<basic_koi8_u<char,
unicode_code_point>, &::ztd::et::koi8_u_index_to_code_point, &::ztd::et::koi8_u_code_point_to_index, char,
unicode_code_point>

The encoding that matches the KOI-8 (Ukranian) encoding specification.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_petscii_unshifted : public __single_byte_lookup_encoding<basic_petscii_unshifted<char,
unicode_code_point>, &::ztd::et::petscii_unshifted_index_to_code_point,
&::ztd::et::petscii_unshifted_code_point_to_index, char, unicode_code_point>

The encoding that matches the PETSCII (CBM ASCII) encoding specification, for unshifted characters (when
the SHIFT button was NOT pressed on a PET/CBM device).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

1.8. API Reference 175

ztd.text, Release 0.0.0

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_petscii_shifted : public __single_byte_lookup_encoding<basic_petscii_shifted<char,
unicode_code_point>, &::ztd::et::petscii_shifted_index_to_code_point,
&::ztd::et::petscii_shifted_code_point_to_index, char, unicode_code_point>

The encoding that matches the PETSCII (CBM ASCII) encoding specification, for shifted characters (when the
SHIFT button was pressed on a PET/CBM device).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_tatar_ansi : public
__txt_impl::__single_ansi_byte_high_bit_lookup_encoding<basic_tatar_ansi<char, unicode_code_point>,
&::ztd::et::tatar_ansi_index_to_code_point, &::ztd::et::tatar_ansi_code_point_to_index, char, unicode_code_point>

The encoding that matches the TATAR encoding (it’s ANSI variant, based on Windows Code Page 1252.)

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_tatar_ascii : public __single_ascii_byte_high_bit_lookup_encoding<basic_tatar_ascii<char,
unicode_code_point>, &::ztd::et::tatar_ascii_index_to_code_point, &::ztd::et::tatar_ascii_code_point_to_index, char,
unicode_code_point>

The encoding that matches the TATAR encoding specification (based on its “ASCII” variant, IBM Code Page
866).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_437_dos_latin_us : public
__single_byte_lookup_encoding<basic_windows_437_dos_latin_us<char, unicode_code_point>,
&::ztd::et::windows_437_dos_latin_us_index_to_code_point,
&::ztd::et::windows_437_dos_latin_us_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 437 (DOS Latin, US).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_865_dos_nordic : public
__single_byte_lookup_encoding<basic_windows_865_dos_nordic<char, unicode_code_point>,
&::ztd::et::windows_865_dos_nordic_index_to_code_point,
&::ztd::et::windows_865_dos_nordic_code_point_to_index, char, unicode_code_point>

176 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

The encoding that matches Microsoft Windows’s Codepage 437 (DOS Latin, US).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_874 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_874<char,
unicode_code_point>, &::ztd::et::windows_874_index_to_code_point,
&::ztd::et::windows_874_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 874.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1251 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1251<char,
unicode_code_point>, &::ztd::et::windows_1251_index_to_code_point,
&::ztd::et::windows_1251_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1251.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1252 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1252<char,
unicode_code_point>, &::ztd::et::windows_1252_index_to_code_point,
&::ztd::et::windows_1252_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1252 (AKA “Latin-1”).

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1253 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1253<char,
unicode_code_point>, &::ztd::et::windows_1253_index_to_code_point,
&::ztd::et::windows_1253_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1253.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

1.8. API Reference 177

ztd.text, Release 0.0.0

class basic_windows_1254 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1254<char,
unicode_code_point>, &::ztd::et::windows_1254_index_to_code_point,
&::ztd::et::windows_1254_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1254.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1255 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1255<char,
unicode_code_point>, &::ztd::et::windows_1255_index_to_code_point,
&::ztd::et::windows_1255_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1255.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1256 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1256<char,
unicode_code_point>, &::ztd::et::windows_1256_index_to_code_point,
&::ztd::et::windows_1256_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1256.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1257 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1257<char,
unicode_code_point>, &::ztd::et::windows_1257_index_to_code_point,
&::ztd::et::windows_1257_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1257.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

template<typename _CodeUnit = char, typename _CodePoint = unicode_code_point>

class basic_windows_1258 : public __single_ascii_byte_high_bit_lookup_encoding<basic_windows_1258<char,
unicode_code_point>, &::ztd::et::windows_1258_index_to_code_point,
&::ztd::et::windows_1258_code_point_to_index, char, unicode_code_point>

The encoding that matches Microsoft Windows’s Codepage 1258.

Template Parameters

• _CodeUnit – The default code unit type to use when outputting encoded units.

• _CodePoint – The code point type to use when outputting decoded units.

178 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

UTF-16

Aliases

constexpr utf16_t ztd::text::utf16 = {}
An instance of the UTF-16 encoding for ease of use.

typedef basic_utf16<char16_t, unicode_code_point> ztd::text::utf16_t

A UTF-16 Encoding that traffics in char16_t. See ztd::text::basic_utf16 for more details.

constexpr wide_utf16_t ztd::text::wide_utf16 = {}
An instance of the UTF-16 that traffics in wchar_t for ease of use.

using ztd::text::wide_utf16_t = basic_utf16<wchar_t>
A UTF-16 Encoding that traffics in wchar_t. See ztd::text::basic_utf16 for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_utf16 : public __utf16_with<basic_utf16<_CodeUnit, unicode_code_point>, _CodeUnit,
unicode_code_point>

A UTF-16 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark

This is a strict UTF-16 implementation that does not allow lone, unpaired surrogates either in or out.

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodePoint – The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using self_synchronizing_code = ::std::true_type
The start of a sequence can be found unambiguously when dropped into the middle of a sequence or after
an error in reading as occurred for encoded text.

Remark

1.8. API Reference 179

ztd.text, Release 0.0.0

Unicode has definitive bit patterns which resemble start and end sequences (“low surrogate” and “high
surrogate” for UTF-16).

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is an empty struct because there is
no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-16 formats, this is usually char16_t, but this can change (see ztd::text::basic_utf16).

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 1> replacement_code_units() noexcept
Returns the replacement code units to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr ::ztd::span<const code_point, 1> replacement_code_points() noexcept
Returns the replacement code point to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr auto skip_input_error(decode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-16 starting byte (single or leading surrogate).

Parameters

• __result – [in] The decode result being processed by the error handler.

• __input_progress – [in] The input that has been read but not committed to consumption.

180 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __output_progress – [in] The output that has been written but could not be committed
due to an error.

static inline constexpr auto skip_input_error(encode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-32 unicode scalar value (or code point) is found.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

1.8. API Reference 181

ztd.text, Release 0.0.0

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce.

static constexpr ::ztd::text_encoding_id encoded_id
The encoding ID for this type. Used for optimization purposes.

static constexpr ::ztd::text_encoding_id decoded_id
The encoding ID for this type. Used for optimization purposes.

UTF-32

Aliases

constexpr utf32_t ztd::text::utf32 = {}
An instance of the UTF-32 encoding for ease of use.

typedef basic_utf32<char32_t, unicode_code_point> ztd::text::utf32_t

A UTF-32 Encoding that traffics in ztd_char32_t. See ztd::text::basic_utf32 for more details.

constexpr wide_utf32_t ztd::text::wide_utf32 = {}
An instance of the UTF-32 that traffics in wchar_t for ease of use.

using ztd::text::wide_utf32_t = basic_utf32<wchar_t>
A UTF-32 Encoding that traffics in wchar_t. See ztd::text::basic_utf32 for more details.

182 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_utf32 : public __utf32_with<basic_utf32<_CodeUnit, unicode_code_point>, _CodeUnit,
unicode_code_point>

A UTF-32 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark

This is a strict UTF-32 implementation that does not allow lone, unpaired surrogates either in or out.

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodeUnit – The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using self_synchronizing_code = ::std::true_type
The start of a sequence can be found unambiguously when dropped into the middle of a sequence or after
an error in reading as occurred for encoded text.

Remark

Unicode has definitive bit patterns which resemble start and end sequences. For UTF-32, there is only 1
code point per fully encoded character.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is an empty struct because there is
no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-32 formats, this is usually ztd_char32_t, but this can change (see ztd::text::basic_utf32).

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

1.8. API Reference 183

ztd.text, Release 0.0.0

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr auto skip_input_error(_Result &&__result, const _InputProgress
&__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-32 unicode scalar value (or code point) is found.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

184 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce.

static constexpr ::ztd::text_encoding_id encoded_id
The encoding ID for this type. Used for optimization purposes.

static constexpr ::ztd::text_encoding_id decoded_id
The encoding ID for this type. Used for optimization purposes.

1.8. API Reference 185

ztd.text, Release 0.0.0

UTF-8

Unicode Transformation Format 8 (UTF-8) is an encoding for text that traffics code units 8-bits at a time. It is ubiquitous
amongst web and other shared protocols and the preferred storage format for non-legacy environments and operations.
It is preferred that all text is placed in UTF-8 format when working internally in your application, unless you have some
special reason (e.g., interoperation with JavaScript or Qt).

Aliases

constexpr utf8_t ztd::text::utf8 = {}
An instance of the UTF-8 encoding for ease of use.

typedef basic_utf8<uchar8_t, unicode_code_point> ztd::text::utf8_t

A UTF-8 Encoding that traffics in uchar8_t. See ztd::text::basic_utf8 for more details.

constexpr compat_utf8_t ztd::text::compat_utf8 = {}
An instance of the compatibility UTF-8 encoding for ease of use.

typedef basic_utf8<char, unicode_code_point> ztd::text::compat_utf8_t

A UTF-8 Encoding that traffics in char, for compatibility purposes with older codebases. See ztd::text::basic_utf8
for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_utf8 : public __utf8_with<basic_utf8<_CodeUnit, unicode_code_point>, _CodeUnit,
unicode_code_point>

A UTF-8 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark

This type as a maximum of 4 input code points and a maximum of 1 output code point. It strictly follows the
Unicode Specification for allowed conversions. For overlong sequences (e.g., similar to Android or Java UTF-8
implementations) and other quirks, see ztd::text::basic_mutf8 or ztd::text::basic_wtf8 .

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodePoint – The code point type to use.

186 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using self_synchronizing_code = ::std::true_type
The start of a sequence can be found unambiguously when dropped into the middle of a sequence or after
an error in reading as occurred for encoded text.

Remark

Unicode has definitive bit patterns which resemble start and end sequences. The bit pattern 0xxxxxxx
indicates a lone bit, and 1xxxxxx indicates a potential start bit for UTF-8. In particular, if 0 is not the first
bit, it must be a sequence of 1s followed immediately by a 0 (e.g., 10xxxxxx, 110xxxxx, 1110xxxx, or
11110xxx).

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

1.8. API Reference 187

ztd.text, Release 0.0.0

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 3> replacement_code_units() noexcept
Returns the replacement code units to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr ::ztd::span<const code_point, 1> replacement_code_points() noexcept
Returns the replacement code point to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr auto skip_input_error(decode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence to modify through the result type.

Remark

This will skip every input value until a proper starting byte is found.

static inline constexpr auto skip_input_error(encode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-32 unicode scalar value (or code point) is found.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

188 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

static constexpr ::ztd::text_encoding_id encoded_id
The encoding ID for this type. Used for optimization purposes.

static constexpr ::ztd::text_encoding_id decoded_id
The encoding ID for this type. Used for optimization purposes.

1.8. API Reference 189

ztd.text, Release 0.0.0

Wide Execution

This is the locale-based, wide runtime encoding. It uses a number of compile-time and runtime heuristics to eventually
be resolved to an implementation-defined encoding. It is not required to work in constant expressions either: for this,
use ztd::text::wide_literal, which represents the compile-time wide string (e.g. L"my string") encoding.

Currently, the hierarchy of behaviors is like so:

• If the platform is Windows, then it assumes this is UTF-16;

• If the platform is MacOS or __STDC_ISO10646__, then it assumed this is UTF-32 of some kind;

• Otherwise, cuneicode is used.

Warning: The C Standard Library has many design defects in its production of code points, which may make it
unsuitable even if your C Standard Library recognizes certain locales (e.g., Big5-HKSCS). The runtime will always
attempt to load iconv if the definition is turned on, since it may do a better job than the C Standard Library’s
interfaces until C23.

Even if, on a given platform, it can be assumed to be a static encoding (e.g., Apple/MacOS where it al-
ways returns the “C” Locale but processes text as UTF-32), ztd::text::wide_execution will always present
itself as a runtime and unknowable encoding. This is to prevent portability issues from relying on, e.g.,
ztd::text::is_decode_injective_v<ztd::text::wide_execution> being true during development and
working with that assumption, only to have it break when ported to a platform where that assumption no longer holds.

Aliases

constexpr wide_execution_t ztd::text::wide_execution = {}
An instance of the wide_execution_t type for ease of use.

class wide_execution_t : public __wide_execution_cwchar
The Encoding that represents the “Wide Execution” (wide locale-based) encoding. The wide execution encoding
is typically associated with the locale, which is tied to the C standard library’s setlocale function.

Remark

Windows uses UTF-16, unless you call the C Standard Library directly. This object may use the C Standard
Library to perform transcoding if certain platform facilities are disabled or not available. If this is the case, the C
Standard Library has fundamental limitations which may treat your UTF-16 data like UCS-2, and result in broken
input/output. This object uses UTF-16 directly on Windows when possible to avoid some of the platform-specific
shenanigans. It will attempt to do UTF-32 conversions where possible as well, relying on C Standard definitions.

190 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Internal Type

Warning: Names with double underscores, and within the __*detail and __*impl namespaces are reserved
for the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any
point in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

<cwchar>-based

class __wide_execution_cwchar
The Encoding that represents the “Wide Execution” (wide locale-based) encoding. This iteration uses the C
Standard Library to do its job.

Remark

Because this encoding uses the C Standard Library’s functions, it is both slower and effectively dangerous because
it requires a roundtrip through the encoding to get to UTF-32, and vice-versa. This is only used when wchar_t
and its locale-based runtime encoding cannot be determined to be UTF-32, UTF-16, or some other statically-
known encoding. These conversions may also be lossy.

Subclassed by wide_execution_t

Public Types

using code_unit = wchar_t
The individual units that result from an encode operation or are used as input to a decode operation.

Remark

Please note that wchar_t is a variably sized type across platforms and may not represent either UTF-16 or
UTF-32, including on *nix or POSIX platforms.

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using decode_state = __wide_decode_state
The state of the wide encoding used between calls, which may potentially manage shift state.

Remark

This type can potentially have lots of state due to the way the C API is specified.

1.8. API Reference 191

ztd.text, Release 0.0.0

using encode_state = __wide_encode_state
The state of the wide encoding used between calls, which may potentially manage shift state.

Remark

This type can potentially have lots of state due to the way the C API is specified.

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

Remark

All known wide encodings can decode into Unicode just fine.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code unit values. On Windows, this
is guaranteed to be UTF-16 encoding for the platform. Normally, this is UTF-32 on *nix/POSIX machines,
but it can (and has been) changed before, sometimes even at runtime.

Remark

IBM encodings/computers make life interesting. . .

using is_unicode_encoding = ::std::false_type
Whether or not this encoding a Unicode encoding of some type.

Remark

On Windows, this is always true. On other platforms, the guarantees are not quite there. IBM encod-
ings/computers make life interesting. . .

Public Static Functions

static inline bool contains_unicode_encoding() noexcept
Returns whether or not this encoding is a unicode encoding.

Remark

192 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This function operates at runtime and queries the existing locale through a variety of platform-specific
means (such as nl_langinfo for POSIX, ACP probing on Windows, or fallin back to std::setlocale
name checking otherwise).

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler &&__error_handler,

encode_state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

Platform APIs and/or the C Standard Library may be used to properly decode one complete unit of infor-
mation (alongside std::mbstate_t usage). Whether or not the state is used is based on the implementation
and what it chooses.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler &&__error_handler,

decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

1.8. API Reference 193

ztd.text, Release 0.0.0

Platform APIs and/or the C Standard Library may be used to properly decode one complete unit of infor-
mation (alongside std::mbstate_t usage). Whether or not the state is used is based on the implementation
and what it chooses.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::std::size_t max_code_units = 8
The maximum code units a single complete operation of encoding can produce.

static constexpr const ::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

MacOS-based / __STDC_ISO106464__-based

class __wide_execution_iso10646 : private __utf32_with<__wide_execution_iso10646, wchar_t, ztd_char32_t>
The wide encoding, as envisioned by ISO 10646. Typically UTF-32 with native endianness.

Remark

This is generally only turned on when the Standard Definition is turn oned (__STDC_ISO_10646__). It effec-
tively uses UTF-32 since that’s the only encoding that can meet the original requirement of the C Standard and
C Standard Library with respect to what happens with individual wchar_t objects.

194 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using code_point = code_point_t<__base_t>
The code point type that is decoded to, and encoded from.

using code_unit = code_unit_t<__base_t>
The code unit type that is decoded from, and encoded to.

using decode_state = decode_state_t<__base_t>
The associated state for decode operations.

using encode_state = encode_state_t<__base_t>
The associated state for encode operations.

using is_unicode_encoding = ::std::integral_constant<bool, is_unicode_encoding_v<__base_t>>
Whether or not this encoding is a unicode encoding or not.

using is_decode_injective = ::std::false_type
Whether or not this encoding’s decode_one step is injective or not.

using is_encode_injective = ::std::false_type
Whether or not this encoding’s encode_one step is injective or not.

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>

1.8. API Reference 195

ztd.text, Release 0.0.0

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::std::size_t max_code_units = 8
The maximum code units a single complete operation of encoding can produce.

static constexpr const ::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

Private Static Functions

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

196 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Windows-based

class __wide_execution_windows : private basic_utf16<wchar_t>
The Encoding that represents the “Wide Execution” (wide locale-based) encoding, as it exists on Windows. The
wide encoding is typically associated with the locale, which is tied to the C standard library’s setlocale function.

Remark

Windows uses UTF-16, unless you call the C Standard Library directly. This object may use the C Standard
Library to perform transcoding if certain platform facilities are disabled or not available (e.g., a Windows-like
machine without the Windows SDK). If this is the case, the C Standard Library has fundamental limitations
which may treat your UTF-16 data like UCS-2, and result in broken input/output. This object uses UTF-16
directly on Windows when possible to avoid some of the platform-specific shenanigans.

1.8. API Reference 197

ztd.text, Release 0.0.0

Public Types

using code_point = code_point_t<__base_t>
The code point type that is decoded to, and encoded from.

using code_unit = code_unit_t<__base_t>
The code unit type that is decoded from, and encoded to.

using decode_state = decode_state_t<__base_t>
The associated state for decode operations.

using encode_state = encode_state_t<__base_t>
The associated state for encode operations.

using is_unicode_encoding = ::std::integral_constant<bool, is_unicode_encoding_v<__base_t>>
Whether or not this encoding is a unicode encoding or not.

using is_decode_injective = ::std::false_type
Whether or not this encoding’s decode_one step is injective or not.

using is_encode_injective = ::std::false_type
Whether or not this encoding’s encode_one step is injective or not.

Public Static Functions

template<typename _Input, typename _Output, typename _ErrorHandler>
static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>

198 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::std::size_t max_code_units = 8
The maximum code units a single complete operation of encoding can produce.

static constexpr const ::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

Wide Literal

The wide_literal encoding handles C and C++ wide string literals (L"") used at compile time and stored in the
binary. The library uses a number of heuristics to determine with any degree of certainty what the encoding of string
literals are, but in some cases it is not explicitly possible to achieve this goal.

If the library cannot figure out the wide literal encoding, the code will typically error with a static_assert, loudly,
that it cannot use the functions on the type when you attempt to do anything with them because it may mangle whatever
input or output you are expecting.

If you know the encoding of wide literals for your project (you provide the command line switch, or similar), then
you can define a configuration macro named ZTD_CXX_COMPILE_TIME_WIDE_ENCODING_NAME to be a string
literal of your type, such as "UTF-16" or "EUC-TW".

If the library does not recognize the encoding and cannot transcode it properly, it will also loudly warn you that it does
not understand the encoding of the literal (in which case, file an issue about it and we will add it to the list of acceptable
wide literal encodings).

If you like to live dangerously and do not care for the warnings, you can define a configuration macro named
ZTD_TEXT_YES_PLEASE_DESTROY_MY_WIDE_LITERALS_UTTERLY_I_MEAN_IT and it will just blindly go
with whatever weird default it ended up deciding on.

(This is usually a catastrophically terrible idea, but let is not be said that we didn’t give you the power to do great things,
even if it cost you your foot.)

1.8. API Reference 199

ztd.text, Release 0.0.0

Alias

constexpr wide_literal_t ztd::text::wide_literal = {}
An instance of the wide_literal_t type for ease of use.

Base Type

class wide_literal_t : public __wide_literal
The encoding of wide string literal_ts (e.g. "") at compile time.

Public Types

using is_unicode_encoding = ::std::integral_constant<bool,
is_unicode_encoding_id(__txt_detail::__wide_literal_id)>

Whether or not this wide_literal_t encoding is a Unicode Transformation Format, such as UTF-8, UTF-
GB18030, UTF-16, or UTF-32.

using code_unit = code_unit_t<__base_t>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = code_point_t<__base_t>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using encode_state = encode_state_t<__base_t>
The state that can be used between calls to encode_one.

using decode_state = decode_state_t<__base_t>
The state that can be used between calls to decode_one.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<__base_t>>
Whether or not the decode operation can process all forms of input into code point values.

Remark

The decode step is always injective because every encoding used for literal_ts in C++ needs to be capable
of being represented by UCNs.

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<__base_t>>
Whether or not the encode operation can process all forms of input into code unit values.

Remark

200 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This is absolutely not guaranteed to be the case, and as such we must check the provided encoding name
for wide to be sure.

Public Functions

constexpr wide_literal_t() noexcept = default
Default constructs a ztd::text::wide_literal.

constexpr wide_literal_t(const wide_literal_t&) noexcept = default
Copy constructs a ztd::text::wide_literal.

constexpr wide_literal_t(wide_literal_t&&) noexcept = default
Move constructs a ztd::text::wide_literal.

constexpr wide_literal_t &operator=(const wide_literal_t&) noexcept = default
Copy assigns into a ztd::text::wide_literal_t object.

constexpr wide_literal_t &operator=(wide_literal_t&&) noexcept = default
Move assigns into a ztd::text::wide_literal_t object.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__state) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::decode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__state) const

1.8. API Reference 201

ztd.text, Release 0.0.0

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns
A ztd::text::encode_result object that contains the input range, output range, error handler,
and a reference to the passed-in state.

Public Static Attributes

static constexpr const ::ztd::text_encoding_id decoded_id = decoded_id_v<__base_t>
The id representing the decoded text.

static constexpr const ::ztd::text_encoding_id encoded_id = encoded_id_v<__base_t>
The id representing the encoded text.

static constexpr ::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

static constexpr ::std::size_t max_code_units = 16
The maximum code units a single complete operation of encoding can produce.

WTF-8

Wobby Transformat Format 8 (WTF-8) is an encoding scheme that preserves lone-encoded surrogates, which is gen-
erally not allowed in streams composed purely of Unicode Scalar Values.

202 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Aliases

constexpr wtf8_t ztd::text::wtf8 = {}
An instance of the WTF-8 type for ease of use.

using ztd::text::wtf8_t = basic_wtf8<uchar8_t>
A “Wobbly Transformation Format 8” (WTF-8) Encoding that traffics in char8_t. See ztd::text::basic_wtf8 for
more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class basic_wtf8 : public __utf8_with<basic_wtf8<_CodeUnit, unicode_code_point>, _CodeUnit,
unicode_code_point, __txt_detail::__empty_state, __txt_detail::__empty_state, false, true, false>

A “Wobbly Transformation Format 8” (WTF-8) Encoding that traffics in, specifically, the desired code unit type
provided as a template argument.

Remark

This type as a maximum of 4 input code points and a maximum of 1 output code point. Unpaired surrogates are
allowed in this type, which may be useful for dealing with legacy storage and implementations of the Windows
Filesystem (modern Windows no longer lets non-Unicode filenames through). For a strict, Unicode-compliant
UTF-8 Encoding, see ztd::text::basic_utf8 .

Template Parameters

• _CodeUnit – The code unit type to use.

• _CodePoint – The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using self_synchronizing_code = ::std::true_type
The start of a sequence can be found unambiguously when dropped into the middle of a sequence or after
an error in reading as occurred for encoded text.

Remark

Unicode has definitive bit patterns which resemble start and end sequences. The bit pattern 0xxxxxxx
indicates a lone bit, and 1xxxxxx indicates a potential start bit for UTF-8. In particular, if 0 is not the first

1.8. API Reference 203

ztd.text, Release 0.0.0

bit, it must be a sequence of 1s followed immediately by a 0 (e.g., 10xxxxxx, 110xxxxx, 1110xxxx, or
11110xxx).

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 3> replacement_code_units() noexcept
Returns the replacement code units to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr ::ztd::span<const code_point, 1> replacement_code_points() noexcept
Returns the replacement code point to use for the ztd::text::replacement_handler_t error handler.

static inline constexpr auto skip_input_error(decode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence to modify through the result type.

Remark

This will skip every input value until a proper starting byte is found.

204 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

static inline constexpr auto skip_input_error(encode_result<_Input, _Output, _State> __result, const
_InputProgress &__input_progress, const _OutputProgress
&__output_progress) noexcept

Allows an encoding to discard input characters if an error occurs, taking in both the state and the input
sequence (by reference) to modify.

Remark

This will skip every input value until a proper UTF-32 unicode scalar value (or code point) is found.

static inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::encode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler
&&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark

To the best ability of the implementation, the iterators will be returned untouched (e.g., the input models
at least a view and a forward_range). If it is not possible, returned ranges may be incremented even if an
error occurs due to the semantics of any view that models an input_range.

1.8. API Reference 205

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns
A ztd::text::decode_result object that contains the reconstructed input range, reconstructed
output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

static constexpr ::ztd::text_encoding_id encoded_id
The encoding ID for this type. Used for optimization purposes.

static constexpr ::ztd::text_encoding_id decoded_id
The encoding ID for this type. Used for optimization purposes.

1.8.4 Error Handlers

assume_valid_handler

The assume_valid_handler is a Undefined-Behavior invoking error handler. If an error is encountered, the encoding
can legally ignore and never, ever call the error handler at all. This can invoke Undefined Behavior on malformed input.

Warning: This should only ever be used on the most trusted of input, ever, and that input should never come
from a source that is a user or connected to ANY external input sources such as the Network, Shared Pipe,
Inter-Procedural Call, or similar.

Implementers of encodings within templates can check for a potentially ignorable error handler like this one using
ztd::text::is_ignorable_error_handler_v.

constexpr assume_valid_handler_t ztd::text::assume_valid_handler = {}
An instance of the assume_valid_handler_t type for ease of use.

206 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

class assume_valid_handler_t
An error handler that tells an encoding that it will pass through any errors, without doing any adjustment, cor-
rection or checking.

Remark

This error handler is useful in conjunction with a ztd::text::ranges::unbounded_view for the fastest possible en-
coding and decoding in a general sense. However: IT IS ALSO EXTREMELY DANGEROUS AND CAN
INVOKE UNDEFINED BEHAVIOR IF YOUR TEXT IS, IN FACT, MESSED UP. PLEASE DO NOT USE
THIS WITHOUT A GOOD REASON!

Public Types

using assume_valid = ::std::integral_constant<bool, true>
A type that is true when calling code can not call this function and ignore it, and false when it cannot ignore
it. See ztd::text::assume_valid_handler_t for details.

Public Functions

template<typename _Encoding, typename _Result, typename _InputProgress, typename
_OutputProgress>
inline constexpr auto operator()(const _Encoding&, _Result __result, const _InputProgress&, const

_OutputProgress&) const
A handler for either decode or encode results that simply passes the result type back through with no changes
made.

Parameters
__result – [in] The current state of the encode operation to pass through.

default_handler

The default handler for all operations. A class type that simply wraps ztd::text::replacement_handler_t
unless configured otherwise. You can change it to throw by default (NOT recommended) by using
ZTD_TEXT_DEFAULT_HANDLER_THROWS.

Using this type, implicitly or explicitly, signals to ztd.text that you would like it to gently admonish you if any
part of a conversion could be potentially lossy (valid data is put in, but it cannot be handled by the desired en-
code/decode/transcode operation).

constexpr default_handler_t ztd::text::default_handler = {}
An instance of the default_handler_t type for ease of use.

class default_handler_t : private replacement_handler_t
The default error handler for the entire library. Can be configured to use different strategies at build time. Without
configuration, it defaults to the ztd::text::replacement_handler_t.

1.8. API Reference 207

ztd.text, Release 0.0.0

Public Types

using error_handler = __error_handler_base_t
The underlying error handler type.

basic_incomplete_handler

This error handler takes the ztd::text::encoding_error::incomplete_sequence error and uses it to read from
the provided “progress” contiguous range provided as the third parameter to any error handler. This can be helpful
in situations here incomplete input is not to be interpreted as an error, such as in situations with networking stacks,
I/O reads (particularly, non-recoverable streams like std::istream_iterators or std::ostream_iterators), and
other such storage cases.

The data read but not used from an incomplete error during encode and decode operations is stored in the
basic_incomplete_handler object and can be accessed VIA the code_points and code_units functions.

template<typename _Encoding, typename _ErrorHandler = pass_handler_t>

class basic_incomplete_handler : private ebco<pass_handler_t>
This handler detects if the error code is an incomplete seqence, and sets the error code to being okay before
returning.

Remark

This type is often useful in conjunction with an accumulation state or buffer, which can be very handy for I/O
(e.g., Networking) operations.

Template Parameters

• _Encoding – The encoding type which dictates the code_unit and code_point buffers to
store in the handler to catch unused input from the last parameter of error handler invocations
by the encoding.

• _ErrorHandler – An error handler to invoke if the encoding error code is NOT an incom-
plete sequence.

Public Types

using error_handler = _ErrorHandler
The underlying error handler type.

208 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Functions

inline constexpr basic_incomplete_handler()
noexcept(::std::is_nothrow_default_constructible_v<__error_handler_base_t>)

Constructs a ztd::text::basic_incomplete_handler with a default-constructed internal error handler.

inline constexpr basic_incomplete_handler(const _ErrorHandler &__error_handler) noex-
cept(::std::is_nothrow_constructible_v<__error_handler_base_t,
const _ErrorHandler&>)

Constructs a ztd::text::basic_incomplete_handler with the provided internal error handler object.

Parameters
__error_handler – The provided error handler object to copy in and use when the error is
not an incomplete error.

inline constexpr basic_incomplete_handler(_ErrorHandler &&__error_handler) noex-
cept(::std::is_nothrow_constructible_v<__error_handler_base_t,
_ErrorHandler&&>)

Constructs a ztd::text::basic_incomplete_handler with the provided internal error handler object.

Parameters
__error_handler – The provided error handler object to move in and use when the error is
not an incomplete error.

inline constexpr _ErrorHandler &base() & noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

inline constexpr const _ErrorHandler &base() const & noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

inline constexpr _ErrorHandler &&base() && noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) const &
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

template<typename _Result, typename _InputProgress, typename _OutputProgress>

1.8. API Reference 209

ztd.text, Release 0.0.0

inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress
&__input_progress, const _OutputProgress &__output_progress) &
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) &&
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

inline ::ztd::span<_CodeUnit> code_units() const noexcept
Returns the code units from the last incomplete decode operations.

inline ::ztd::span<_CodePoint> code_points() const noexcept
Returns the code points from the last incomplete encode operations.

210 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

pass_handler

The pass_handler does exactly what its name implies: it passes the error as generated by the encoding object through
without touching it. Unlike ztd::text::assume_valid_handler, this one does not invoke undefined behavior because it
does not meet the requirements for the ztd::text::is_ignorable_error_handler trait.

constexpr pass_handler_t ztd::text::pass_handler = {}
An instance of pass_handler_t for ease of use.

class pass_handler_t : public __txt_detail::__pass_through_handler_with<false>
An error handler that tells an encoding that it will pass through any errors, without doing any adjustment, cor-
rection or checking. Does not imply it is ignorable, unlike ztd::text::assume_valid_handler_t which can invoke
UB if an error occurs.

replacement_handler

The replacement_handler_t is the go-to error handling class. It is also the ztd::text::default_handler unless con-
figured otherwise.

Replacement works by using several different hooks on the provided encoding objects, or by falling back to some
defaults if certain conditions are met. The user-controllable hooks are:

• encoding.replacement_code_units(...), a function (which can be static or constexpr) that returns a
range of code units to insert directly into an output stream on a failed encode operation. It can also be called
as a secondary backup if an decode operation fails, whereupon it will use the values in the range to attempt
decodeing them into the output if possible. It can be empty, to indicate that nothing is to be inserted.

• encoding.replacement_code_points(...), a function (which can be static or constexpr) that returns
a range of code points to insert directly into an output stream on a failed decode operation. It can also be called
as a secondary backup if an encode operation fails, whereupon it will use the values in the range to attempt
encodeing them into the output if possible. It can be empty, to indicate that nothing is to be inserted.

• encoding.maybe_replacement_code_units(...), a function (which can be static or constexpr) that
returns a maybe-range. If the expression if (maybe_returned_range) evaluates to true, it will get
the range returned by the function by performing a dereference of decltype(auto) returned_range =
*maybe_returned_range;. If the conditional expression does not evaluate to true, it will assume that nothing
can be returned from the function. This is useful for runtime-only encodings or encodings that wrap other encod-
ings and may not have a replacement function. The dereferenced returned range is used exactly as its non-maybe
counterpart.

• encoding.maybe_replacement_code_points(...), a function (which can be static or constexpr)
that returns a maybe-range. If the expression if (maybe_returned_range) evaluates to true, it will get
the range returned by the function by performing a dereference of decltype(auto) returned_range =
*maybe_returned_range;. If the conditional expression does not evaluate to true, it will assume that nothing
can be returned from the function. This is useful for runtime-only encodings or encodings that wrap other encod-
ings and may not have a replacement function. The dereferenced returned range is used exactly as its non-maybe
counterpart.

Each replacement handler can take the current encode_state/decode_state parameter for its desired operation, if
it so chooses. This will allow replacements to hook into the statefulness of any given encoding operation. It will call
replacement_code_units(state) first, if it’s well-formed. Otherwise, it will call replacement_code_units().
It will do this with each of the 4 replacement functions mentioned above.

After a replacement is done (if any), the function will then skip over bad input. The skipping is done by calling
ztd::text::skip_input_error(. . .) with the encoding and result object, before returning, and after replacements are done.

1.8. API Reference 211

ztd.text, Release 0.0.0

constexpr replacement_handler_t ztd::text::replacement_handler = {}
A convenience variable for passing the replacement_handler_t handler to functions.

class replacement_handler_t
An error handler that replaces bad code points and code units with a chosen code point / code unit sequence.

Remark

This class hooks into the encodings passed as the first parameter to the error handling functions to see if
they define either replacement_code_points() or replacement_code_units() function. If so, they
will call them and use the returned contiguous range to isnert code points or code units into the func-
tion. If neither of these exist, then it checks for a definition of a maybe_replacement_code_points()
or a maybe_replacement_code_units() function. If either is present, they are expected to return a
std::optional of a contiguous range. If it is engaged (the std::optional is filled) it will be used. Oth-
erwise, if it is not engaged, then it will explicitly fall back to attempt to insert the default replacement character
U+FFFD (U'') or ? character. If the output is out of room for the desired object, then nothing will be inserted at
all.

Subclassed by default_handler_t

Public Functions

template<typename _Encoding, typename _Input, typename _Output, typename _State, typename
_InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, encode_result<_Input, _Output, _State>

__result, const _InputProgress &__input_progress, const _OutputProgress
&__output_progress) const
noexcept(::ztd::text::is_nothrow_skip_input_error_v<const _Encoding&,
encode_result<_Input, _Output, _State>, const _InputProgress&, const
_OutputProgress&>)

The function call for inserting replacement code units at the point of failure, before returning flow back to
the caller of the encode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] How much input was (potentially irreversibly) read from the
input range before undergoing the attempted encode operation.

• __output_progress – [in] How much output was (potentially irreversibly) written to the
output range before undergoing the attempted encode operation.

template<typename _Encoding, typename _Input, typename _Output, typename _State, typename
_InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, decode_result<_Input, _Output, _State>

__result, const _InputProgress &__input_progress, const _OutputProgress
&__output_progress) const
noexcept(::ztd::text::is_nothrow_skip_input_error_v<const _Encoding&,
decode_result<_Input, _Output, _State>, const _InputProgress&, const
_OutputProgress&>)

212 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

The function call for inserting replacement code points at the point of failure, before returning flow back
to the caller of the decode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] How much input was (potentially irreversibly) read from the
input range before undergoing the attempted encode operation.

• __output_progress – [in] How much output was (potentially irreversibly) written to the
output range before undergoing the attempted encode operation.

skip_handler

The skip_handler, unlike the ztd::text::replacement_handler_t, passes over any malformed input and performs no
changes to the output. It is considered a subset of the behavior of the replacement error handler.

The skipping is done by calling ztd::text::skip_input_error(. . .) with the encoding and result.

constexpr skip_handler_t ztd::text::skip_handler = {}
An instance of skip_handler_t for ease of use.

class skip_handler_t
An error handler that simply skips bad input on error, and performs no replacement.

Remark

If a sequence of text depends on the state of the previous text, and there is an illegal sequence in the mid-
dle of such a sequence, using their error handler can cause a cascade of failures as the state may not be
prepared for the new input; therefore, it may skip more than a user of this error handler might expect. This
is something that may happen due to shift state issues (e.g., when an encoding is not self-synchronizing
(ztd::text::is_self_syncrhonizing_code)).

Public Functions

template<typename _Encoding, typename _Result, typename _InputProgress, typename
_OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result &&__result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) const
noexcept(::ztd::text::is_input_error_skippable_v<const _Encoding&,
_Result, const _InputProgress&, const _OutputProgress&>)

Skips over any input that may produce an error.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

1.8. API Reference 213

ztd.text, Release 0.0.0

• __input_progress – [in] How much input was (potentially irreversibly) read from the
input range before undergoing the attempted encode operation.

• __output_progress – [in] How much output was (potentially irreversibly) written to the
output range before undergoing the attempted encode operation.

throw_handler

The throw_handler simply throws a ztd::text::encoding_error as an exception. This should only EVER be used for
pre-verified, trusted input sources, debugging purposes, or similar; malformed text is a common enough occurrence
that throwing errors by default or using this handler by default is a bad idea in almost every way.

Throwing on encoding, decoding, and other errors can easily result in Denial of Service target points if this is used in
conjunction with user or untrusted input sources.

constexpr throw_handler_t ztd::text::throw_handler = {}
An instance of throw_handler_t for ease of use.

class throw_handler_t
An error handler that throws on any encode operation failure.

Remark

This class absolutely should not be used unless the user is prepared to handle spurious failure, especially for text
processing that deals with input vectors. This can result in many exceptions being thrown, which for resource-
intensive applications could cause issues and result in Denial of Service by way of repeated, unhandled, and
unexpected failure.

Public Functions

template<typename _Encoding, typename _Input, typename _Output, typename _State, typename
_InputProgress, typename _OutputProgress>
inline constexpr encode_result<_Input, _Output, _State> operator()(const _Encoding&,

encode_result<_Input, _Output,
_State> __result, const
_InputProgress&, const
_OutputProgress&) const
noexcept(false)

Throws a ztd::text::encoding_error as an exception on an encode failure.

template<typename _Encoding, typename _Input, typename _Output, typename _State, typename
_InputProgress, typename _OutputProgress>
inline constexpr decode_result<_Input, _Output, _State> operator()(const _Encoding&,

decode_result<_Input, _Output,
_State> __result, const
_InputProgress&, const
_OutputProgress&) const
noexcept(false)

Throws a ztd::text::encoding_error code as an exception on a decode failure.

214 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.8.5 Conversion and Counting Functions

count_as_decoded

ztd::text::count_as_decoded is a function that takes an input sequence of code_units and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets
the error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This
is, for example, the case with ztd::text::replacement_handler_t - output replacement code units or code points will be
counted as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok.
You can differentiate error-less text from non-error text by checking result.errors_were_handled(), which will
be true if the error handler is called regardless of whether or not the error handler “smooths” the problem over by
inserting replacement characters, doing nothing, or otherwise.

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

• The text_count_as_decoded(input, encoding, handler, state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_decoded base function.

The base function call, basic_count_as_decoded, simply performs the core counting loop using the Lucky 7 design.

During the basic_count_as_decoded loop, if it detects that there is a preferable text_count_as_decoded_one, it
will call that method as text_count_as_decoded_one(input, encoding, handler, state) inside of the loop
rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_decoded directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto basic_count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting a decode operation.

Remark

This method does not call ADL extension points. It attempts a combination of implementation techniques to
count code units, with a loop over the .decode call into an intermediate, unseen buffer being the most basic
guaranteed implementation attempt.

1.8. API Reference 215

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns
A ztd::text::count_result that includes information about how many code units are present, taking
into account any invoked errors (like replacement from ztd::text::replacement_handler_t) and a
reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting a decode operation.

Remark

This method will first check if an ADL Extension Point text_count_as_decoded is callable with the given
arguments. If it is, then that method will be used to do the work after forwarding all four arguments to that
function call. Otherwise, it defers to ztd::text::basic_count_as_decoded.

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns
A ztd::text::count_result that includes information about how many code units are present, taking
into account any invoked errors (like replacement from ztd::text::replacement_handler_t) and a
reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler)
Counts the number of code units that will result from attempting a decode operation.

Remark

Calls ztd::text::count_as_decoded(Input, Encoding, ErrorHandler, State) with an state that is created by
ztd::text::make_decode_state(Encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

216 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _Encoding>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding)

Counts the number of code units that will result from attempting a decode operation.

Remark

Calls ztd::text::count_as_decoded(Input, Encoding, ErrorHandler) with an error_handler that is similar to
ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input>
constexpr auto count_as_decoded(_Input &&__input)

Counts the number of code units that will result from attempting a decode operation.

Remark

Calls ztd::text::count_as_decoded(Input, Encoding) with an encoding that is derived from
ztd::text::default_code_unit_encoding.

Parameters
__input – [in] The input range (of code units) to find out how many code points there are.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

1.8. API Reference 217

ztd.text, Release 0.0.0

count_as_encoded

ztd::text::count_as_encoded is a function that takes an input sequence of code_points and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets the
error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This is, for
example, the case with ztd::text::replacement_handler - output replacement code units or code points will be counted
as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok. You can
differentiate error-less text from non-error text by checking result.errors_were_handled(), which will be true
if the error handler is called regardless of whether or not the error handler “smooths” the problem over by inserting
replacement characters, doing nothing, or otherwise.

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

• The text_count_as_encoded(input, encoding, handler, state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_encoded base function.

The base function call, basic_count_as_encoded, simply performs the core counting loop using the Lucky 7 design.

During the basic_count_as_encoded loop, if it detects that there is a preferable text_count_as_encoded_one, it
will call that method as text_count_as_encoded_one(input, encoding, handler, state) inside of the loop
rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic encode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_encoded directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

count_as_transcoded

ztd::text::count_as_transcoded is a function that takes an input sequence of code_units and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets
the error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This
is, for example, the case with ztd::text::replacement_handler_t - output replacement code units or code points will be
counted as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok.
You can differentiate error-less text from non-error text by checking result.errors_were_handled(), which will
be true if the error handler is called regardless of whether or not the error handler “smooths” the problem over by
inserting replacement characters, doing nothing, or otherwise.

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

218 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• The text_count_as_transcoded(input, from_encoding, to_encoding, from_handler,
to_handler, from_state, to_state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_transcoded base function.

The base function call, basic_count_as_transcoded, simply performs the core counting loop using the Lucky 7
design.

During the basic_count_as_transcoded loop, if it detects that there is a preferable
text_count_as_transcoded_one, it will call that method as text_count_as_transcoded_one(input,
encoding, handler, state) inside of the loop rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_transcoded directly. This can be useful to stop infinity loops
when your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState, typename _Pivot>
constexpr auto basic_count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

This method will not check any ADL extension points. A combination of implementation techniques will be
used to count code units, with a loop over the .encode_one / .decode_one call into an intermediate, unseen
buffer being the most basic choice.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

1.8. API Reference 219

ztd.text, Release 0.0.0

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

• __to_state – [inout] The state related to the __to_encoding that will be used for the final
encoding step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) pivot range, usually
a range of contiguous data from a span provided by the implementation but customizable
by the end-user. If the intermediate conversion is what failed, then the ztd::text::pivot’s
error_code member will be set to that error. This only happens if the overall operation
also fails, and need not be checked unless to obtain additional information for when a top-
level operation fails.

Returns
A ztd::text::count_result that includes information about how many code units are present, taking
into account any invoked errors (like replacement from ztd::text::replacement_handler_t) and a
reference to the provided __from_state and __to_state .

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState, typename _Pivot>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state,
_ToState &__to_state, _Pivot &&__pivot)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

This method checks for the ADL extension point text_count_as_transcoded . It will be called if it is possible.
Otherwise, this function will defer to ztd::text::basic_count_as_transcoded.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

220 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_state – [inout] The state related to the __to_encoding that will be used for the final
encoding step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) pivot range, usually
a range of contiguous data from a span provided by the implementation but customizable
by the end-user. If the intermediate conversion is what failed, then the ztd::text::pivot’s
error_code member will be set to that error. This only happens if the overall operation
also fails, and need not be checked unless to obtain additional information for when a top-
level operation fails.

Returns
A ztd::text::count_result that includes information about how many code units are present, taking
into account any invoked errors (like replacement from ztd::text::replacement_handler_t) and a
reference to the provided __from_state and __to_state .

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state,
_ToState &__to_state)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding,
from_error_handler, to_error_handler, from_state, to_state) with an to_state created by
ztd::text::make_encode_state(to_encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

• __to_state – [inout] The state attached to the __to_encoding that will be used for the
final encode step.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

1.8. API Reference 221

ztd.text, Release 0.0.0

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding,
from_error_handler, to_error_handler, from_state, to_state) with an to_state created by
ztd::text::make_encode_state(to_encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding, from_error_handler,
to_error_handler, from_state) with an from_state created by ztd::text::make_decode_state(from_encoding).

Parameters

222 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when the decode portion of the
transcode operation fails.

• __to_error_handler – [in] The error handler to invoke when the encode portion of the
transcode operation fails.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Counts the number of code units that will result from attempting an transcode operation.

Remark

This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding, from_error_handler,
to_error_handler) by creating an to_error_handler similar to ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when the decode portion of the
transcode operation fails.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Counts the number of code units that will result from attempting an transcode operation.

1.8. API Reference 223

ztd.text, Release 0.0.0

Remark

This method will call ztd::text::count_as_transcoded(Input, Encoding, ErrorHandler) by creating an
error_handler similar to ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _ToEncoding>
constexpr auto count_as_transcoded(_Input &&__input, _ToEncoding &&__to_encoding)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark

Calls ztd::text::count_as_transcoded(Input, Encoding) with an encoding that is derived from
ztd::text::default_code_unit_encoding.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __to_encoding – [in] The encoding that is going to be used to encode the input into an
intermediary output.

Returns
A ztd::text::stateless_count_result that includes information about how many code
units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

224 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

decode

The decode grouping of functions (decode, decode_to, and decode_into_raw) perform the task of doing bulk
decoding from an input of code_units to the encoding’s code_point type. They are also accompanied by
decode_one variants (decode_one, decode_one_to, decode_one_into), which serve the same purpose as their
bulk counterpoints but only do a single indivisible unit of work’s worth of work.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::decode_result or ztd::text::stateless_decode_result with the desired output container embedded as the
.output parameter (mid level); or,

• ztd::text::decode_result or ztd::text::stateless_decode_result returning just the input and output ranges (lowest
level).

decode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output con-
tainer type. The default container will either be a std::basic_string of the code_point type, or a std::vector
if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::decode<std::vector<char32_t>>("bark", ztd::text::ascii{});. The output container is
default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the decode function, returning only the container and not returning any of the
result or state information used to construct it.

1.8. API Reference 225

ztd.text, Release 0.0.0

decode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type that is embedded within a ztd::text::decode_result, or a ztd::text::stateless_decode_result, depending
on whether or not you called the version which takes a ztd::text::decode_state_t<Encoding> as a parameter or if it had
to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::decode_to<std::u32string>("meow", ztd::text::ascii{});. The output container is default
constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

decode_into_raw(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, encoding, output, handler, and state and writes data into
the output range specified by output. The result is a ztd::text::decode_result, or a ztd::text::stateless_decode_result,
depending on whether or not you called the version which takes a ztd::text::decode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

For Everything

All named functions have 4 overloads. Each of the “higher level” functions, at the end of their overload call chain,
will call the lower-level decode_into_raw to perform the work. The final decode_into_raw call uses the following
ordering of extension points into calling the base implementation:

• text_decode_into_raw(input, encoding, output, handler, state)

• An internal, implementation-defined customization point.

• basic_decode_into_raw

The base function call, basic_decode_into_raw, simply performs the core decode loop using the Lucky 7 design.
This design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained
devices.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function on your Encoding Object type will guarantee a proper, working implementation.

226 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_decode_into_raw directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Bulk Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_decode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

This function performs the bog-standard, basic loop for decoding. It talks to no ADL extension points.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto decode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

This function detects whether or not the ADL extension point text_decode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will

1.8. API Reference 227

ztd.text, Release 0.0.0

loop over the two encodings and attempt to decode by repeatedly calling the encoding’s required decode_one
function.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto decode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

Creates a default state using ztd::text::make_decode_state.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto decode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

228 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto decode_into_raw(_Input &&__input, _Output &&__output)

Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to decode the input code units, by default.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

This function performs the bog-standard, basic loop for decoding. It talks to no ADL extension points.

Parameters

1.8. API Reference 229

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler, _State &__state)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

This function performs the bog-standard, basic loop for decoding. It talks to no ADL extension points.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler)
Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

Creates a default state using ztd::text::make_decode_state.

230 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto decode_into(_Input &&__input, _Output &&__output)

Converts from the code units of the given __input view through the encoding to code points into the __output
view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to decode the input code units, by default.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

1.8. API Reference 231

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns
A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>
constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,

_State &__state)
Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to. The result is then returned, with the .
output value put into the container.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
A ztd::text::decode_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates a state using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

232 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

Returns
A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input>
constexpr auto decode_to(_Input &&__input)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code units from and use in the decode operation that will
produce code points.

Returns
A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

1.8. API Reference 233

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>
constexpr auto decode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler, _State

&__state)
Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto decode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates a state using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

234 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto decode(_Input &&__input, _Encoding &&__encoding)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto decode(_Input &&__input)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code units from and use in the decode operation that will
produce code points.

Returns
An object of type _OutputContainer .

1.8. API Reference 235

ztd.text, Release 0.0.0

Single Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto decode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

This function is simply a small wrapper for calling decode_one on the __encoding object.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode_one
step.

Returns
A ztd::text::decode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto decode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default state using ztd::text::make_decode_state.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

236 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto decode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto decode_one_into_raw(_Input &&__input, _Output &&__output)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to decode_one the input code units, by
default.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>

1.8. API Reference 237

ztd.text, Release 0.0.0

constexpr auto decode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,
_ErrorHandler &&__error_handler, _State &__state)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

This function is simply a small wrapper for calling decode_one on the __encoding object.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode_one
step.

Returns
A ztd::text::decode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto decode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default state using ztd::text::make_decode_state.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

238 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto decode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto decode_one_into(_Input &&__input, _Output &&__output)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to decode_one the input code units, by
default.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __output – [in] An output_view to write code points to as the result of the decode_one
operation from the intermediate code units.

Returns
A ztd::text::stateless_decode_one_result object that contains references to __state.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>
constexpr auto decode_one_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

1.8. API Reference 239

ztd.text, Release 0.0.0

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to. The result is then returned, with the .
output value put into the container.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode_one
step.

Returns
A ztd::text::decode_one_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto decode_one_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

Remark

This function creates a state using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_decode_one_result object whose output is of type _OutputContainer.

240 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto decode_one_to(_Input &&__input, _Encoding &&__encoding)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

Returns
A ztd::text::stateless_decode_one_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input>
constexpr auto decode_one_to(_Input &&__input)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code units from and use in the decode_one operation that
will produce code points.

Returns
A ztd::text::stateless_decode_one_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>
constexpr auto decode_one(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,

_State &__state)
Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

1.8. API Reference 241

ztd.text, Release 0.0.0

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode_one
step.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto decode_one(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

Remark

This function creates a state using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto decode_one(_Input &&__input, _Encoding &&__encoding)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

242 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode_one operation
that will produce code points.

• __encoding – [in] The encoding that will be used to decode_one the input’s code points
into output code units.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto decode_one(_Input &&__input)

Converts one indivisible unit of information from the code units of the given __input view through the encoding
to code points, stored in an object of _OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code units from and use in the decode_one operation that
will produce code points.

Returns
An object of type _OutputContainer .

encode

The encode grouping of functions (encode, encode_to, and encode_into_raw) perform the task of doing bulk
decoding from an input of code_points to the encoding’s code_unit type. They are also accompanied by
encode_one variants (encode_one, encode_one_to, encode_one_into), which serve the same purpose as their
bulk counterpoints but only do a single indivisible unit of work’s worth of work.

1.8. API Reference 243

ztd.text, Release 0.0.0

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::encode_result or ztd::text::stateless_encode_result with the desired output container embedded as the
.output parameter (mid level); or,

• ztd::text::encode_result or ztd::text::stateless_encode_result returning just the input and output ranges (lowest
level).

encode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type. The default container will either be a std::basic_string of the code_unit type, or a std::vector
if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::encode<std::vector<std::byte>>(U"bark", ztd::text::utf16_be{});. The output con-
tainer is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the encode function, returning only the container and not returning any of the
result or state information used to construct it.

encode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type that is embedded within a ztd::text::encode_result, or a ztd::text::stateless_encode_result, depending
on whether or not you called the version which takes a ztd::text::encode_state_t<Encoding> as a parameter or if it had
to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::encode_to<std::string>(U"meow", ascii{});. The output container is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

244 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

encode_into_raw(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, encoding, output, handler, and state and writes data into
the output range specified by output. The result is a ztd::text::encode_result, or a ztd::text::stateless_encode_result,
depending on whether or not you called the version which takes a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

For Everything

All named functions have 4 overloads. Each of the “higher level” functions, at the end of their overload call chain,
will call the lower-level encode_into_raw to perform the work. The final encode_into_raw call uses the following
ordering of extension points into calling the base implementation:

• text_encode_into_raw(input, encoding, output, handler, state)

• An internal, implementation-defined customization point.

• basic_encode_into_raw(input, encoding, output, handler, state)

The final function call, basic_encode_into_raw, simply performs the core encode loop using the Lucky 7 design.
This design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained
devices.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic encode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_encode_into_raw directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

1.8. API Reference 245

ztd.text, Release 0.0.0

Bulk Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_encode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

This function does not attempt to call any extension points for encoding. It simply uses the encoding and attempts
to encode by repeatedly calling the encoding’s required encode_one function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns
A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto encode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

This function detects whether or not the ADL extension point text_encode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to encode by repeatedly calling the encoding’s required encode_one
function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

246 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns
A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto encode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default state using ztd::text::make_encode_state.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto encode_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

1.8. API Reference 247

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto encode_into_raw(_Input &&__input, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to encode the input code points, by de-
fault.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

This function detects whether or not the ADL extension point text_encode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to encode by repeatedly calling the encoding’s required encode_one
function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

248 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler, _State &__state)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

This function detects whether or not the ADL extension point text_encode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to encode by repeatedly calling the encoding’s required encode_one
function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns
A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default state using ztd::text::make_encode_state.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

1.8. API Reference 249

ztd.text, Release 0.0.0

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto encode_into(_Input &&__input, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to encode the input code points, by de-
fault.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

Returns
A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>

250 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,
_State &__state)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to. The result is then returned, with the .
output value put into the container.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns
A ztd::text::encode_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates a state using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

1.8. API Reference 251

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

Returns
A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input>
constexpr auto encode_to(_Input &&__input)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code points from and use in the encode operation that will
produce code units.

Returns
A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>
constexpr auto encode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler, _State

&__state)

252 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto encode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates a state using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding>

1.8. API Reference 253

ztd.text, Release 0.0.0

constexpr auto encode(_Input &&__input, _Encoding &&__encoding)
Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto encode(_Input &&__input)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code points from and use in the encode operation that will
produce code units.

Returns
An object of type _OutputContainer .

254 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Single Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto encode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

This function takes care of performing some “normalizations” of the output and input range types (like turning
them into a span or string_view if at all recognizable or preferable).

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode_one
step.

Returns
A ztd::text::encode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto encode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default state using ztd::text::make_encode_state.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

1.8. API Reference 255

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto encode_one_into_raw(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto encode_one_into_raw(_Input &&__input, _Output &&__output)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to encode_one the input code points, by
default.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

256 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto encode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

This function takes care of performing some “normalizations” of the output and input range types (like turning
them into a span or string_view if at all recognizable or preferable).

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode_one
step.

Returns
A ztd::text::encode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto encode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler)
Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default state using ztd::text::make_encode_state.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

1.8. API Reference 257

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto encode_one_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as careless.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto encode_one_into(_Input &&__input, _Output &&__output)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units into the __output view.

Remark

Creates a default encoding by figuring out the value_type of the __input, then passing that type into
ztd::text::default_code_point_encoding_t. That encoding is that used to encode_one the input code points, by
default.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __output – [in] An output_view to write code units to as the result of the encode_one
operation from the intermediate code points.

Returns
A ztd::text::stateless_encode_one_result object that contains references to __state.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>

258 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto encode_one_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler
&&__error_handler, _State &__state)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to. The result is then returned, with the .
output value put into the container.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode_one
step.

Returns
A ztd::text::encode_one_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto encode_one_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler)
Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates a state using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

1.8. API Reference 259

ztd.text, Release 0.0.0

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
A ztd::text::stateless_encode_one_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto encode_one_to(_Input &&__input, _Encoding &&__encoding)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

Returns
A ztd::text::stateless_encode_one_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input>
constexpr auto encode_one_to(_Input &&__input)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

Returns
A ztd::text::stateless_encode_one_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>

260 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto encode_one(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,
_State &__state)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function detects creates a container of type _OutputContainer and uses a typical std::back_inserter
or std::push_back_inserter to fill in elements as it is written to.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode_one
step.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto encode_one(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates a state using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns
An object of type _OutputContainer .

1.8. API Reference 261

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto encode_one(_Input &&__input, _Encoding &&__encoding)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

• __encoding – [in] The encoding that will be used to encode_one the input’s code points
into output code units.

Returns
An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto encode_one(_Input &&__input)

Converts a single indivisible unit of work’s worth of code points of the given __input view through the encoding
to code units in the specified _OutputContainer type.

Remark

This function creates an encoding by using the value_type of the __input which is then passed through the
ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters
_OutputContainer – The container type to serialize data into.

Parameters
__input – [in] An input_view to read code points from and use in the encode_one operation
that will produce code units.

Returns
An object of type _OutputContainer .

262 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

recode

The recode grouping of functions (recode, recode_to, and recode_into_raw) perform the task of doing bulk
transcoding from an input of code_units to a second encoding’s code_unit type. It expects to traffic through the
code_point type as the intermediary between the two functions. There is also a recode_one API as well that does
a single indivisible unit of work for both decoding (to a common representation) and then encoding, and has the same
variants as the bulk function.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::recode_result or ztd::text::stateless_recode_result with the desired output container embedded as the
.output parameter (mid level); or,

• ztd::text::recode_result or ztd::text::stateless_recode_result returning just the input and output ranges (lowest
level).

recode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type. The default container will either
be a std::basic_string of the code_unit type, or a std::vector if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::recode<std::vector<char16_t>>("bark", ztd::text::utf16{});. The output container is
default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary
buffer (controlled by ZTD_TEXT_INTERMEDIATE_RECODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the recode function, returning only the container and not returning any of the
result or state information used to construct it.

1.8. API Reference 263

ztd.text, Release 0.0.0

recode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type that is embedded within a
ztd::text::recode_result, or a ztd::text::stateless_recode_result, depending on whether or not you called the version
which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter or
if it had to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::recode_to<std::string>(U"meow", ascii{});. The output container is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary
buffer (controlled by ZTD_TEXT_INTERMEDIATE_RECODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

recode_into_raw(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, and to_state to write data into an output range specified by output. The result is a
ztd::text::recode_result, or a ztd::text::stateless_recode_result, depending on whether or not you called the version
which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter or
if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

For Everything

All named functions have 6 overloads. Each of the “higher level” functions, at the end of their overload call chain,
will call the lower-level recode_into_raw to perform the work. The final recode_into_raw call uses the following
ordering of extension points into calling the base implementation:

• The text_recode_into_raw(input, from_encoding, output, to_encoding, ...) extension point.

• An implementation-defined extension point if any internal optimizations are possible.

• The basic_recode_into_raw(input, from_encoding, output, to_encoding, ...) function.

The final function call, basic_recode_into_raw, simply performs the core recode loop using the Lucky 7 design.
basic_recode_into_raw accommodates the lowest level transformation using just decode_one into a suitably sized
intermediate buffer and then an encode_one into the output, calling the relevant error handlers along the way. This
design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained devices.

However, there is a caveat: if there exists a text_recode_one(input, from_encoding, output,
to_encoding, ...) that is callable then it will be called to perform one unit of complete transformation.
Otherwise, decode_one/encode_one

264 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

The recode_one extension point is also used in the ztd::text::recode_view<. . .> to speed up one-by-one translations
for iteration-based types, where possible.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function of the from_encoding and the recode_one of the to_encoding function on your Encoding Object type
will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_recode_into_raw directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Bulk Functions

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto basic_recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

1.8. API Reference 265

ztd.text, Release 0.0.0

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

266 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_recode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

1.8. API Reference 267

ztd.text, Release 0.0.0

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function calls the base reference, the ztd::text::recode_into_raw after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_recode_result as op-
posed to a ztd::text::recode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_recode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

268 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The result
from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>

1.8. API Reference 269

ztd.text, Release 0.0.0

constexpr auto recode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output
&&__output, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_recode_result as opposed to a
ztd::text::pivotless_recode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto recode_into_raw(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result because the state
information is on the stack, and returning the state in those types by reference will result in references to memory
that has already been cleaned up. If you need access to the state parameters, call the lower-level functionality
with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

270 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::pivotless_recode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>

1.8. API Reference 271

ztd.text, Release 0.0.0

constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,
_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_recode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

272 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This function calls the base reference, the ztd::text::recode_into after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_recode_result as op-
posed to a ztd::text::pivotless_recode_result because the state information is on the stack, and returning the state
in those types by reference will result in references to memory that has already been cleaned up. If you need
access to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_recode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

1.8. API Reference 273

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The result
from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto recode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

274 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_recode_result as opposed to a
ztd::text::pivotless_recode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto recode_into(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_recode_result as opposed to a ztd::text::pivotless_recode_result because the state
information is on the stack, and returning the state in those types by reference will result in references to memory
that has already been cleaned up. If you need access to the state parameters, call the lower-level functionality
with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state, _Pivot
&&__pivot)

1.8. API Reference 275

ztd.text, Release 0.0.0

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

276 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_recode_result object that contains references to __from_state and
__to_state and an output parameter that contains the _OutputContainer specified. If the
container has a container.reserve function, it is and some multiple of the input’s size is used
to pre-size the container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the encode step of the operation is create using ztd::text::make_encode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

1.8. API Reference 277

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the decode step of the operation is create using ztd::text::make_decode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A to_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be

278 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto recode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

1.8. API Reference 279

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto recode_to(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding &&__to_encoding,

_FromErrorHandler &&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

280 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding &&__to_encoding,

_FromErrorHandler &&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>

1.8. API Reference 281

ztd.text, Release 0.0.0

constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding &&__to_encoding,
_FromErrorHandler &&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an to_state for the encoding step of the operation using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding &&__to_encoding,

_FromErrorHandler &&__from_error_handler, _ToErrorHandler &&__to_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an from_state for the encoding step of the operation using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

282 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding &&__to_encoding,

_FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

1.8. API Reference 283

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto recode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto recode(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates both: a from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it; and, a from_encoding derived from the __input’s
value_type. The careless marking matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

284 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_to or ztd::text::recode_into_raw.

Single Functions

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto basic_recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding,
_FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. nly one.

Remark

This function detects whether or not the ADL extension point text_recode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

1.8. API Reference 285

ztd.text, Release 0.0.0

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_recode_one can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

286 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_recode_one can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

1.8. API Reference 287

ztd.text, Release 0.0.0

Remark

This function calls the base reference, the ztd::text::recode_one_into_raw after creating a to_state from
ztd::text::make_decode_state. The result from this function returns a ztd::text::stateless_recode_result as op-
posed to a ztd::text::recode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

Returns
A ztd::text::stateless_recode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a encode state from_state by calling ztd::text::make_encode_state. The result from this
function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because the state
information is on the stack, and returning the state in those types by reference will result in references to memory
that has already been cleaned up. If you need access to the state parameters, call the lower-level functionality
with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

288 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The result
from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto recode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

1.8. API Reference 289

ztd.text, Release 0.0.0

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.
The result from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto recode_one_into_raw(_Input &&__input, _ToEncoding &&__to_encoding, _Output

&&__output)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because the state information
is on the stack, and returning the state in those types by reference will result in references to memory that has
already been cleaned up. If you need access to the state parameters, call the lower-level functionality with your
own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>

290 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto basic_recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output
&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_recode_one can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

1.8. API Reference 291

ztd.text, Release 0.0.0

Remark

This function detects whether or not the ADL extension point text_recode_one can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop
over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_recode_one can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will loop

292 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

over the two encodings and attempt to recode by first decoding the input code units to code points, then encoding
the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function calls the base reference, the ztd::text::recode_one_into after creating a to_state from
ztd::text::make_decode_state. The result from this function returns a ztd::text::stateless_recode_result as op-
posed to a ztd::text::recode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

1.8. API Reference 293

ztd.text, Release 0.0.0

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

Returns
A ztd::text::stateless_recode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a encode state from_state by calling ztd::text::make_encode_state. The result from this
function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because the state
information is on the stack, and returning the state in those types by reference will result in references to memory
that has already been cleaned up. If you need access to the state parameters, call the lower-level functionality
with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>

294 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output
&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The result
from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto recode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.
The result from this function returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

1.8. API Reference 295

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto recode_one_into(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_recode_result as opposed to a ztd::text::recode_result because the state information
is on the stack, and returning the state in those types by reference will result in references to memory that has
already been cleaned up. If you need access to the state parameters, call the lower-level functionality with your
own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the decode operation
from the intermediate code points.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

296 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

1.8. API Reference 297

ztd.text, Release 0.0.0

Returns
A ztd::text::recode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the decode step of the operation is create using ztd::text::make_decode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

298 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

A default state for the encode step of the operation is create using ztd::text::make_encode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A to_error_handler for the decode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

1.8. API Reference 299

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto recode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the decode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _ToEncoding>
constexpr auto recode_one_to(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the decode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be

300 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_recode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state, _Pivot
&&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

1.8. API Reference 301

ztd.text, Release 0.0.0

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s decode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an to_state for the encoding step of the operation using ztd::text::make_decode_state.

302 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
encode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an from_state for the encoding step of the operation using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

1.8. API Reference 303

ztd.text, Release 0.0.0

• __to_error_handler – [in] The error handler for the __to_encoding ‘s decode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s encode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto recode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

304 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This function creates a from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to encode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto recode_one(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates both: a from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it; and, a from_encoding derived from the "__input"'s
value_type. The careless marking matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the encode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to decode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::recode_one_to or ztd::text::recode_one_into.

1.8. API Reference 305

ztd.text, Release 0.0.0

transcode

The transcode grouping of functions (transcode, transcode_to, and transcode_into_raw) perform the task
of doing bulk transcoding from an input of code_units to a second encoding’s code_unit type. It expects to traffic
through the code_point type as the intermediary between the two functions. There is also a transcode_one API as
well that does a single indivisible unit of work for both decoding (to a common representation) and then encoding, and
has the same variants as the bulk function.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::transcode_result or ztd::text::stateless_transcode_result with the desired output container embedded
as the .output parameter (mid level); or,

• ztd::text::transcode_result or ztd::text::stateless_transcode_result returning just the input and output ranges
(lowest level).

transcode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type. The default container will either
be a std::basic_string of the code_unit type, or a std::vector if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::transcode<std::vector<char16_t>>("bark", ztd::text::utf16{});. The output container
is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the transcode function, returning only the container and not returning any of
the result or state information used to construct it.

306 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

transcode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type that is embedded within a
ztd::text::transcode_result, or a ztd::text::stateless_transcode_result, depending on whether or not you called the ver-
sion which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::transcode_to<std::string>(U"meow", ascii{});. The output container is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

transcode_into_raw(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, and to_state to write data into an output range specified by output. The result is a
ztd::text::transcode_result, or a ztd::text::stateless_transcode_result, depending on whether or not you called the ver-
sion which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

For Everything

All named functions have 6 overloads. Each of the “higher level” functions, at the end of their overload call chain,
will call the lower-level transcode_into_raw to perform the work. The final transcode_into_raw call uses the
following ordering of extension points into calling the base implementation:

• The text_transcode_into_raw(input, from_encoding, output, to_encoding, ...) extension
point.

• An implementation-defined extension point if any internal optimizations are possible.

• The basic_transcode_into_raw(input, from_encoding, output, to_encoding, ...) function.

The final function call, basic_transcode_into_raw, simply performs the core transcode loop using the Lucky 7
design. basic_transcode_into_raw accommodates the lowest level transformation using just decode_one into a
suitably sized intermediate buffer and then an encode_one into the output, calling the relevant error handlers along the
way. This design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained
devices.

1.8. API Reference 307

ztd.text, Release 0.0.0

However, there is a caveat: if there exists a text_transcode_one(input, from_encoding, output,
to_encoding, ...) that is callable then it will be called to perform one unit of complete transformation. Other-
wise, decode_one/encode_one

The transcode_one extension point is also used in the ztd::text::transcode_view<. . .> to speed up one-by-one trans-
lations for iteration-based types, where possible.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function of the from_encoding and the transcode_one of the to_encoding function on your Encoding Object type
will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-defined
extension points, then call basic_transcode_into_raw directly. This can be useful to stop infinity loops when your
extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Bulk Functions

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto basic_transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot
&&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

308 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

1.8. API Reference 309

ztd.text, Release 0.0.0

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_transcode_result object that contains references to __from_state and
__to_state.

310 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function calls the base reference, the ztd::text::transcode_into_raw after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_transcode_result as
opposed to a ztd::text::transcode_result because the state information is on the stack, and returning the state in
those types by reference will result in references to memory that has already been cleaned up. If you need access
to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

1.8. API Reference 311

ztd.text, Release 0.0.0

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::pivotless_transcode_result be-
cause the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to a
ztd::text::pivotless_transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

312 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto transcode_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to a
ztd::text::pivotless_transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto transcode_into_raw(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this func-
tion returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::pivotless_transcode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

1.8. API Reference 313

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::pivotless_transcode_result object that contains references to __from_state and
__to_state.

314 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

1.8. API Reference 315

ztd.text, Release 0.0.0

Remark

This function calls the base reference, the ztd::text::transcode_into after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_transcode_result as
opposed to a ztd::text::pivotless_transcode_result because the state information is on the stack, and returning
the state in those types by reference will result in references to memory that has already been cleaned up. If you
need access to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::pivotless_transcode_result be-
cause the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

316 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to a
ztd::text::pivotless_transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

1.8. API Reference 317

ztd.text, Release 0.0.0

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to a
ztd::text::pivotless_transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access to
the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto transcode_into(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this func-
tion returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::pivotless_transcode_result because
the state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>

318 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding
&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

1.8. API Reference 319

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::pivotless_transcode_result object that contains references to __from_state and
__to_state and an output parameter that contains the _OutputContainer specified. If the
container has a container.reserve function, it is and some multiple of the input’s size is used
to pre-size the container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the encode step of the operation is create using ztd::text::make_encode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

320 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the decode step of the operation is create using ztd::text::make_decode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

1.8. API Reference 321

ztd.text, Release 0.0.0

A to_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

322 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto transcode_to(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state, _Pivot
&&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

1.8. API Reference 323

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

324 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an to_state for the encoding step of the operation using ztd::text::make_encode_state.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an from_state for the encoding step of the operation using ztd::text::make_decode_state.

1.8. API Reference 325

ztd.text, Release 0.0.0

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you

326 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto transcode(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates both: a from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it; and, a from_encoding derived from the __input’s
value_type. The careless marking matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
std::basic_string or a std::vector of some sort.

Parameters

1.8. API Reference 327

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into_raw.

Single Functions

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto basic_transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding,

_Output &&__output, _ToEncoding &&__to_encoding,
_FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState
&__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. nly one.

Remark

This function detects whether or not the ADL extension point text_transcode can be called with the provided
parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it will
loop over the two encodings and attempt to transcode by first decoding the input code units to code points, then
encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

328 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_transcode_one can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it
will loop over the two encodings and attempt to transcode by first decoding the input code units to code points,
then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

1.8. API Reference 329

ztd.text, Release 0.0.0

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_transcode_one can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it
will loop over the two encodings and attempt to transcode by first decoding the input code units to code points,
then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

330 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

This function calls the base reference, the ztd::text::transcode_one_into_raw after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_transcode_result as
opposed to a ztd::text::transcode_result because the state information is on the stack, and returning the state in
those types by reference will result in references to memory that has already been cleaned up. If you need access
to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result because the
state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

1.8. API Reference 331

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The re-
sult from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto transcode_one_into_raw(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

332 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The re-
sult from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto transcode_one_into_raw(_Input &&__input, _ToEncoding &&__to_encoding, _Output

&&__output)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result because the state infor-
mation is on the stack, and returning the state in those types by reference will result in references to memory that
has already been cleaned up. If you need access to the state parameters, call the lower-level functionality with
your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>

1.8. API Reference 333

ztd.text, Release 0.0.0

constexpr auto basic_transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output
&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot
&&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_transcode_one can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it
will loop over the two encodings and attempt to transcode by first decoding the input code units to code points,
then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState, typename
_Pivot>
constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state, _Pivot &&__pivot)

334 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

This function detects whether or not the ADL extension point text_transcode_one can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it
will loop over the two encodings and attempt to transcode by first decoding the input code units to code points,
then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view. Only performs one distinct unit of encoding.

Remark

1.8. API Reference 335

ztd.text, Release 0.0.0

This function detects whether or not the ADL extension point text_transcode_one can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise, it
will loop over the two encodings and attempt to transcode by first decoding the input code units to code points,
then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function calls the base reference, the ztd::text::transcode_one_into after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_transcode_result as
opposed to a ztd::text::transcode_result because the state information is on the stack, and returning the state in
those types by reference will result in references to memory that has already been cleaned up. If you need access
to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

336 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates a decode state from_state by calling ztd::text::make_decode_state. The result from this
function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result because the
state information is on the stack, and returning the state in those types by reference will result in references
to memory that has already been cleaned up. If you need access to the state parameters, call the lower-level
functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>

1.8. API Reference 337

ztd.text, Release 0.0.0

constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output
&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The re-
sult from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto transcode_one_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates an from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective. The re-
sult from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result in
references to memory that has already been cleaned up. If you need access to the state parameters, call the
lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

338 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto transcode_one_into(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark

This function creates both: a from_error_handler using a ztd::text::default_handler_t that is marked as care-
less to pass to the next function overload; and, a from_encoding to interpret the __input by checking the
__input ‘s value_type. This matters for lossy conversions that are not injective. The result from this function
returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result because the state infor-
mation is on the stack, and returning the state in those types by reference will result in references to memory that
has already been cleaned up. If you need access to the state parameters, call the lower-level functionality with
your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

1.8. API Reference 339

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

Returns
A ztd::text::transcode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

340 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
A ztd::text::transcode_result object that contains references to __from_state and __to_state
and an output parameter that contains the _OutputContainer specified. If the container has a
container.reserve function, it is and some multiple of the input’s size is used to pre-size the
container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A default state for the encode step of the operation is create using ztd::text::make_encode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

1.8. API Reference 341

ztd.text, Release 0.0.0

Remark

A default state for the decode step of the operation is create using ztd::text::make_decode_state. The return type
is stateless since both states must be passed in. If you want to have access to the states, create both of them
yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A to_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

342 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto transcode_one_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be
passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _ToEncoding>
constexpr auto transcode_one_to(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

A from_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must be

1.8. API Reference 343

ztd.text, Release 0.0.0

passed in. If you want to have access to the states, create both of them yourself and pass them into a lower-level
function that accepts those parameters.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
A ztd::text::stateless_transcode_result object that contains references to an container.output
parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState, typename _Pivot>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state, _Pivot &&__pivot)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) range as the interme-
diate pivot, usually a range of contiguous data from a span provided by the implementation
but can be passed in here by the user.

344 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an to_state for the encoding step of the operation using ztd::text::make_encode_state.

1.8. API Reference 345

ztd.text, Release 0.0.0

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates an from_state for the encoding step of the operation using ztd::text::make_decode_state.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

346 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates a to_error_handler from a class like ztd::text::default_handler_t, but that is marked as
careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto transcode_one(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

1.8. API Reference 347

ztd.text, Release 0.0.0

This function creates a from_error_handler from a class like ztd::text::default_handler_t, but that is marked
as careless since you did not explicitly provide it. This matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto transcode_one(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark

This function creates both: a from_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it; and, a from_encoding derived from the "__input"'s
value_type. The careless marking matters for lossy conversions that are not injective.

Template Parameters
_OutputContainer – The container to default-construct and serialize data into. Typically, a
fixed-size container of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns
An _OutputContainer with the result, regardless of whether an error occurs or not. If you
are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_one_to or ztd::text::transcode_one_into.

348 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

validate_decodable_as

ztd::text::validate_decodable_as is a function that takes an input sequence of code_units and attempts to val-
idate that they can be turned into the code_points of the provided encoding. Unlike the ztd::text::count_as_decoded
function, this does not take an error handler. Any error, even if it would be corrected over, produces a stop in the
algorithm and a validate_result/stateless_validate_result object gets returned with the .valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_decodable_as(input, encoding, decode_state) extension point, if possible.

• The text_validate_decodable_as(input, encoding, decode_state, encode_state) extension
point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_decodable_as base function.

The base function call, basic_validate_decodable_as, simply performs the core validating loop using the Lucky
7 design. The reason the last overload takes 2 state arguments is due to how the base implementation works from the
core validating loop. If during the 3-argument overload it is detected that text_validate_decodable_as(input,
encoding, decode_state) can be called, it will be called without attempt to create an encode_state value with
ztd::text::make_encode_state(. . .).

During the basic_validate_decodable_as loop, if it detects that there is a preferable
text_validate_decodable_as_one, it will call that method as text_validate_decodable_as_one(input,
encoding, decode_state) inside of the loop rather than doing the core design.

The ztd::text::validate_result type only includes the decode_state in all cases.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-defined
extension points, then call basic_validate_decodable_as directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _DecodeState, typename _EncodeState>
constexpr auto basic_validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state, _EncodeState &__encode_state)
Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark

1.8. API Reference 349

ztd.text, Release 0.0.0

This function explicitly does not call any extension points. It defers to doing a typical loop over the code points
to verify it can be decoded into code points, and then encoded back into code units, with no errors and with the
exact same value sequence as the original.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _Encoding, typename _DecodeState, typename _EncodeState>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state, _EncodeState &__encode_state)
Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark

This functions checks to see if extension points for text_validate_decodable_as is available taking the
available 4 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_decodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _Encoding, typename _DecodeState>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state)
Validates the code units of the __input according to the __encoding with the given state __decode_state to
see if it can be turned into code points.

Remark

This functions checks to see if extension points for text_validate_decodable_as is available taking the avail-
able 3 parameters. If so, it calls this. Otherwise, it creates an encoding state through ztd::text::make_encode_state
before calling ztd::text::validate_decodable_as(__input, __encoding, __decode_state, __encode_state).

Parameters

350 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

template<typename _Input, typename _Encoding>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding)

Validates the code units of the __input according to the __encoding to see if they can be turned into code
points.

Remark

This functions creates an encoding state through ztd::text::make_decode_state before calling the next overload
of ztd::text::validate_decodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input>
constexpr auto validate_decodable_as(_Input &&__input)

Validates the code units of the __input to see if it can be turned into code points.

Remark

This functions creates an encoding by passing the value_type of the __input range through
ztd::text::default_code_unit_encoding.

Parameters
__input – [in] The input range of code units to validate is possible for encoding into code points.

Returns
A ztd::text::stateless_validate_result detailing whether or not the input code points can be turned
into code units of the corresponding encoding.

validate_encodable_as

ztd::text::validate_encodable_as is a function that takes an input sequence of code_points and attempts to
validate that they can be turned into the code_units of the provided encoding. Unlike the ztd::text::count_as_encoded
function, this does not take an error handler. Any error, even if it would be corrected over, produces a stop in the
algorithm and a validate_result/stateless_validate_result object gets returned with the .valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_encodable_as(input, encoding, encode_state) extension point, if possible.

1.8. API Reference 351

ztd.text, Release 0.0.0

• The text_validate_encodable_as(input, encoding, encode_state, decode_state) extension
point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_encodable_as base function.

The base function call, basic_validate_encodable_as, simply performs the core validating loop using the Lucky
7 design. The reason the last overload takes 2 state arguments is due to how the base implementation works from the
core validating loop. If during the 3-argument overload it is detected that text_validate_encodable_as(input,
encoding, encode_state) can be called, it will be called without attempt to create an decode_state value with
ztd::text::make_decode_state(. . .).

During the basic_validate_encodable_as loop, if it detects that there is a preferable
text_validate_decodable_as_one, it will call that method as text_validate_encodable_as_one(input,
encoding, encode_state) inside of the loop rather than doing the core design.

The ztd::text::validate_result type only includes the encode_state in all cases.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-defined
extension points, then call basic_validate_encodable_as directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _EncodeState, typename _DecodeState>
constexpr auto basic_validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state, _DecodeState &__decode_state)
Validates the code points of the __input according to the __encoding with the given states __encode_state
and __decode_state.

Remark

This function explicitly does not check any of the extension points. It defers to doing a typical loop over the code
points to verify it can be encoded into code units, and then decoded into code points, with no errors.

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

• __decode_state – [in] The state to use for the decoding portion of the validation check, if
needed.

352 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Encoding, typename _EncodeState, typename _DecodeState>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state, _DecodeState &__decode_state)
Validates the code points of the __input according to the __encoding with the given states __encode_state
and __decode_state.

Remark

This functions checks to see if extension points for text_validate_encodable_as is available taking the
available 4 parameters. If so, it calls this. Otherwise, it defers to doing a typical loop over the code points to
verify it can be encoded into code units, and then decoded into code points, with no errors.

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

• __decode_state – [in] The state to use for the decoding portion of the validation check, if
needed.

template<typename _Input, typename _Encoding, typename _EncodeState>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state)
Validates the code points of the __input according to the __encoding with the given states
"__encode_state".

Remark

This functions checks to see if extension points for text_validate_encodable_as is available taking the
available 3 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_encodable_as.

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state for encoding to use.

template<typename _Input, typename _Encoding>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding)

Validates the code points of the __input according to the "__encoding".

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

1.8. API Reference 353

ztd.text, Release 0.0.0

• __encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input>
constexpr auto validate_encodable_as(_Input &&__input)

Validates the code points of the input.

Remark

This passes the default encoding as inferred from the discernible value_type of the input range input into the
ztd::text::default_code_point_encoding.

Parameters
__input – [in] The input range of code points to validate is possible for encoding into code units.

validate_transcodable_as

ztd::text::validate_transcodable_as is a function that takes an input sequence of code_units and at-
tempts to validate that they can be turned into the code_points of the provided encoding. Unlike the
ztd::text::count_as_decoded function, this does not take an error handler. Any error, even if it would be corrected
over, produces a stop in the algorithm and a validate_result/stateless_validate_result object gets returned with the
.valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_transcodable_as(input, from_encoding, to_encoding, decode_state,
encode_state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_transcodable_as base function.

The base function call, basic_validate_transcodable_as, simply performs the core validating loop us-
ing the Lucky 7 design. The reason the last overload takes 2 state arguments is due to how the base im-
plementation works from the core validating loop. If during the 3-argument overload it is detected that
text_validate_transcodable_as(input, encoding, decode_state) can be called, it will be called without
attempt to create an encode_state value with ztd::text::make_encode_state(. . .).

During the basic_validate_transcodable_as loop, if it detects that there is
a preferable text_validate_transcodable_as_one, it will call that method as
text_validate_transcodable_as_one(input, encoding, decode_state) inside of the loop rather than
doing the core design.

The ztd::text::validate_result type only includes the decode_state in all cases.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_validate_transcodable_as directly. This can be useful to stop infinity
loops when your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

354 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Functions

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState,
typename _EncodeState, typename _Pivot>
constexpr auto basic_validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState
&__decode_state, _EncodeState &__encode_state, _Pivot
&&__pivot)

Validates the code units of the __input according to the __from_encoding with the given states
__decode_state and __encode_state to see if it can be turned into code points, and then code units again.

Remark

This function explicitly does not call any extension points. It defers to doing a typical loop over the code points
to verify it can be decoded into code points, and then encoded back into code units, with no errors and with the
exact same value sequence as the original.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [inout] The state to use for the decoding portion of the validation check.

• __encode_state – [inout] The state to use for the encoding portion of the validation check.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) pivot range, usually
a range of contiguous data from a span provided by the implementation but customizable
by the end-user. If the intermediate conversion is what failed, then the ztd::text::pivot’s
error_code member will be set to that error. This only happens if the overall operation
also fails, and need not be checked unless to obtain additional information for when a top-
level operation fails.

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState,
typename _EncodeState, typename _Pivot>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState &__decode_state,
_EncodeState &__encode_state, _Pivot &&__pivot)

Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark

This functions checks to see if extension points for text_validate_transcodable_as is available taking the
available 4 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_transcodable_as.

Parameters

1.8. API Reference 355

ztd.text, Release 0.0.0

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [inout] The state to use for the decoding portion of the validation check.

• __encode_state – [inout] The state to use for the encoding portion of the validation check.

• __pivot – [inout] A reference to a descriptor of a (potentially usable) pivot range, usually
a range of contiguous data from a span provided by the implementation but customizable
by the end-user. If the intermediate conversion is what failed, then the ztd::text::pivot’s
error_code member will be set to that error. This only happens if the overall operation
also fails, and need not be checked unless to obtain additional information for when a top-
level operation fails.

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState,
typename _EncodeState>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState &__decode_state,
_EncodeState &__encode_state)

Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark

This functions checks to see if extension points for text_validate_transcodable_as is available taking the
available 4 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_transcodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [inout] The state to use for the decoding portion of the validation check.

• __encode_state – [inout] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState &__decode_state)
Validates the code units of the __input according to the __from_encoding object with the given state
__decode_state to see if it can be turned into code units of the __to_encoding object.

Remark

This functions will call ztd::text::make_encode_state with __to_encoding to create a default encode_state.

356 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [inout] The state to use for the decoding portion of the validation check.

template<typename _Input, typename _FromEncoding, typename _ToEncoding>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding)
Validates the code units of the __input according to the __from_encoding object to see if it can be turned into
code units of the __to_encoding object.

Remark

This functions will call ztd::text::make_decode_state with the __from_encoding object to create a default
decode_state to use before passing it to the next overload.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input, typename _ToEncoding>
constexpr auto validate_transcodable_as(_Input &&__input, _ToEncoding &&__to_encoding)

Validates the code units of the __input according to the __from_encoding object to see if it can be turned into
code units of the __to_encoding object.

Remark

This functions will call ztd::text::make_encode_state with __to_encoding to create a default encode_state.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

1.8. API Reference 357

ztd.text, Release 0.0.0

1.8.6 Properties and Classifications

code_point

template<typename _Type>

class code_point
Retrieves the code point type for the given type.

Public Types

using type = typename remove_cvref_t<_Type>::code_point
The code point type for the given encoding type. If it does not exist, ztd::text::unicode_code_point
is assumed.

template<typename _Type>

using ztd::text::code_point_t = typename code_point<_Type>::type
A typename alias for ztd::text::code_point.

code_unit

template<typename _Type>

class code_unit
Retrieves the code unit type for the given type.

Public Types

using type = typename remove_cvref_t<_Type>::code_unit
The code unit type for the encoding type.

template<typename _Type>

using ztd::text::code_unit_t = typename code_unit<remove_cvref_t<_Type>>::type
A typename alias for ztd::text::code_unit.

decode_state

template<typename _Type>

class decode_state
Retrieves the decode_state of the encoding type if it has one, or the state type of the encoding.

358 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using type = typename __txt_detail::__decode_state<remove_cvref_t<_Type>>::type
The decode_state type or state type on a given encoding type.

template<typename _Type>

using ztd::text::decode_state_t = typename decode_state<_Type>::type
Typename alias for ztd::text::decode_state.

encode_state

template<typename _Type>

class encode_state
Retrieves the encode_state of the encoding type if it has one, or the state type of the encoding.

Public Types

using type = typename __txt_detail::__encode_state<remove_cvref_t<_Type>>::type
The encode_state type or state type on a given encoding type.

template<typename _Type>

using ztd::text::encode_state_t = typename encode_state<_Type>::type
Typename alias for ztd::text::encode_state.

max_code_points

The maximum number of code points needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_point = ztd::text::code_point_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_code_points_v<ztd::text::utf8>;

std::array<code_point, max_output_size> my_cxx_buffer;
code_point my_c_buffer[max_output_size];

template<typename _Type>

static constexpr ::std::size_t ztd::text::max_code_points_v = _Type::max_code_points
Gets the maximum number of code points that can be produced by an encoding during a decode operation,
suitable for initializing a automatic storage duration (“stack-allocated”) buffer.

1.8. API Reference 359

ztd.text, Release 0.0.0

max_code_units

The maximum number of code units needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_unit = ztd::text::code_unit_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_code_units_v<ztd::text::utf8>;

// C++-style
std::array<code_unit, max_output_size> my_cxx_buffer;
// or C-style
code_unit my_c_buffer[max_output_size];

template<typename _Type>

static constexpr ::std::size_t ztd::text::max_code_units_v = remove_cvref_t<_Type>::max_code_units
Gets the maximum number of code units that can be produced by an encoding during an encode operation,
suitable for initializing a automatic storage duration (“stack-allocated”) buffer.

max_recode_code_points

The maximum number of code units needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_point = ztd::text::code_point_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_recode_code_points_v
→˓<ztd::text::utf8, ztd::text::utf16>;

// C++-style
std::array<code_point, max_output_size> my_cxx_buffer;
// or C-style
code_point my_c_buffer[max_output_size];

template<typename _From, typename _To>

static constexpr ::std::size_t ztd::text::max_recode_code_points_v = max_code_units_v<_From> *
max_code_points_v<_To> * 2

Gets the maximum number of code units needed to represent a full ztd::text::transcode_one operation without
running out of output space.

max_transcode_code_units

The maximum number of code units needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_unit = ztd::text::code_unit_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_transcode_code_units_v
→˓<ztd::text::utf16, ztd::text::utf8>;

// C++-style
std::array<code_unit, max_output_size> my_cxx_buffer;
// or C-style
code_unit my_c_buffer[max_output_size];

360 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _From, typename _To>

static constexpr ::std::size_t ztd::text::max_transcode_code_units_v = max_code_points_v<_From> *
max_code_units_v<_To> * 2

Gets the maximum number of code units needed to represent a full ztd::text::transcode_one operation without
running out of output space.

is_state_independent_v

template<typename _Encoding, typename _Type>

constexpr bool ztd::text::is_state_independent_v = !::std::is_constructible_v<_Type, _Encoding> &&
::std::is_default_constructible_v<_Type>

Whether or not the given type can be constructed without information from the encoding itself.

Remark

This value tells users at compile time whether or not they need to be careful with the state. Rather than
let users have to work this independently, two functions — ztd::text::make_encode_state(_Encoding) and
ztd::text::make_encode_state(_Encoding) — handle the details here.

Template Parameters

• _Encoding – The encoding that may contain necessary information.

• _Type – The state type that may need information from the encoding to be successfully
constructed.

is_decode_state_independent_v

template<typename _Encoding>

constexpr bool ztd::text::is_decode_state_independent_v = is_state_independent_v<_Encoding,
decode_state_t<_Encoding>>

Whether or not the encoding’s decode_state can be constructed without information from the encoding itself.

is_encode_state_independent_v

template<typename _Encoding>

constexpr bool ztd::text::is_encode_state_independent_v = is_state_independent_v<_Encoding,
encode_state_t<_Encoding>>

Whether or not the encoding’s decode_state can be constructed without information from the encoding itself.

1.8. API Reference 361

ztd.text, Release 0.0.0

is_decode_injective_v

Looks to see if the decode_one operation on a given encoding type is injective.

This classification checks whether the given encoding type has a type definition called is_decode_injective on it,
and if it does checks to see if its std::true_type. If it’s not present, or if it’s std::false_type, then the encoding
is assumed to NOT be injective.

template<typename _Type>

class is_decode_injective : public std::integral_constant<bool,
__txt_detail::__is_decode_injective_sfinae<::ztd::remove_cvref_t<_Type>>::value ||
__txt_detail::__is_injective_sfinae<::ztd::remove_cvref_t<_Type>>::value>

Checks whether or not the decoding step for _Type is injective (cannot possibly lose information regardless of
whatever valid input is put in).

Remark

If the encoding object does not define is_decode_injective, it is assumed to be false (the safest default).

Template Parameters
_Type – The encoding type to check.

template<typename _Type>

constexpr bool ztd::text::is_decode_injective_v =
is_decode_injective<::ztd::remove_cvref_t<_Type>>::value

An alias of the inner value for ztd::text::is_decode_injective.

is_encode_injective_v

Looks to see if the encode_one operation on a given encoding type is injective.

This classification checks whether the given encoding type has a type definition called is_encode_injective on it,
and if it does checks to see if its std::true_type. If it’s not present, or if it’s std::false_type, then the encoding
is assumed to NOT be injective.

template<typename _Type>

class is_encode_injective : public std::integral_constant<bool,
__txt_detail::__is_encode_injective_sfinae<_Type>::value || __txt_detail::__is_injective_sfinae<_Type>::value>

Checks whether or not the encoding step for _Type is injective (cannot possibly lose information regardless of
whatever valid input is put in).

Remark

If the encoding object does not define is_encode_injective, it is assumed to be false (the safest default).

Template Parameters
_Type – The encoding type to check.

362 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Type>

constexpr bool ztd::text::is_encode_injective_v = is_encode_injective<_Type>::value
An alias of the inner value for ztd::text::is_encode_injective.

is_code_units_(maybe_)replaceable

These two traits detect whether or not the given Encoding type have calls on them which return ei-
ther a replacement range (is_code_units_replaceable) or a std::optional of a replacement range
(is_code_units_maybe_replaceable).

The former is useful when it is guaranteed that your encoding will have a replacement range on it and does not need
the extra cost of an indirection from not knowing. The latter is useful when something like a wrapped encoding may
or may not have a replacement sequence.

template<typename _Type, typename ..._Args>

class is_code_units_replaceable : public is_detected<__txt_detail::__detect_is_code_units_replaceable, _Type,
_Args...>

Checks whether the given encoding type returns a maybe-replacement range of code units.

Remark

The value boolean is true if the given _Type has a function named replacement_code_units() on it that
can be called from a const-qualified _Type which returns a contiguous view of code units.

Template Parameters
_Type – The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_units_replaceable_v = is_code_units_replaceable<_Type,
_Args...>::value

An alias of the inner value for ztd::text::is_code_units_replaceable.

template<typename _Type, typename ..._Args>

class is_code_units_maybe_replaceable : public
is_detected<__txt_detail::__detect_is_code_units_maybe_replaceable, _Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code units.

Remark

The value boolean is true if the given _Type has a function named maybe_replacement_code_units() on
it that can be called from a const -qualified _Type which returns a std::optional containing a contiguous
view of code units.

Template Parameters
_Type – The type to check for the proper function call.

1.8. API Reference 363

ztd.text, Release 0.0.0

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_units_maybe_replaceable_v =
is_code_units_maybe_replaceable<_Type, _Args...>::value

An alias of the inner value for ztd::text::is_code_units_maybe_replaceable.

is_code_points_(maybe_)replaceable

These two traits detect whether or not the given Encoding type have calls on them which return ei-
ther a replacement range (is_code_points_replaceable) or a std::optional of a replacement range
(is_code_points_maybe_replaceable).

The former is useful when it is guaranteed that your encoding will have a replacement range on it and does not need
the extra cost of an indirection from not knowing. The latter is useful when something like a wrapped encoding may
or may not have a replacement sequence.

template<typename _Type, typename ..._Args>

class is_code_points_replaceable : public is_detected<__txt_detail::__detect_is_code_points_replaceable,
_Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code points.

Remark

The value boolean is true if the given _Type has a function named replacement_code_points() on it that
can be called from a const -qualified _Type object which returns a contiguous view of code points.

Template Parameters
_Type – The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_points_replaceable_v = is_code_points_replaceable<_Type,
_Args...>::value

An alias of the inner value for ztd::text::is_code_points_replaceable.

template<typename _Type, typename ..._Args>

class is_code_points_maybe_replaceable : public
is_detected<__txt_detail::__detect_is_code_points_maybe_replaceable, _Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code points.

Remark

The value boolean is true if the given _Type has a function named maybe_replacement_code_points()
on it that can be called from a const -qualified _Type object which returns a std::optional containing a
contiguous view of code points.

Template Parameters
_Type – The type to check for the proper function call.

364 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_points_maybe_replaceable_v =
is_code_points_maybe_replaceable<_Type, _Args...>::value

An alias of the inner value for ztd::text::is_code_points_maybe_replaceable.

is_ignorable_error_handler

template<typename _Type>

class is_ignorable_error_handler : public
__is_ignorable_error_handler_sfinae<::ztd::remove_cvref_t<_Type>>

Whether or not the given _Type is an error handler that can be ignored.

Remark

An error handler type can mark itself as ignorable by using a using assume_valid =
std::integral_constant<bool, value> where value determines if the type’s error handling callback
can be ignored. This is what ztd::text::assume_valid does. Being configurable means templated error handlers
can select whether or not they should be ignorable based on compile time, safe conditions that you can make up
(including checking Macros or other environment data as a means of determining whether or not validity should
be ignored.) If this results in a type derived from std::true_type and the encoder object using it encounters
an error, then it is Undefined Behavior what occurs afterwards.

Template Parameters
_Type – the Error Handling type to chec.

template<typename _Type>

constexpr bool ztd::text::is_ignorable_error_handler_v =
is_ignorable_error_handler<::ztd::remove_cvref_t<_Type>>::value

An alias of the inner value for ztd::text::is_ignorable_error_handler.

is_state_complete

template<typename _Encoding, typename _State>
constexpr bool ztd::text::is_state_complete(_Encoding &__encoding, _State &__state) noexcept

Returns whether or not a state has completed any associated operations and has no more manipulations on the
output to perform, even if the input source is empty.

Remark

If the state does not have a member function is_complete, then this will simply return true. Otherwise, it
invokes __state.is_complete().

Parameters

• __encoding – [in] The encoding for the state.

1.8. API Reference 365

ztd.text, Release 0.0.0

• __state – [in] The state to check for completion.

is_unicode_encoding

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

template<typename _Type>

class is_unicode_encoding : public __is_unicode_encoding_sfinae<::ztd::remove_cvref_t<_Type>>
Checks whether or not the encoding has declared it can handle all of Unicode.

Remark

If the encoding object does not define is_unicode_encoding, it is assumed to be false (the safest default).

Template Parameters
_Type – The encoding type to check.

template<typename _Type>

constexpr bool ztd::text::is_unicode_encoding_v =
is_unicode_encoding<::ztd::remove_cvref_t<_Type>>::value

An alias of the inner value for ztd::text::is_unicode_encoding.

contains_unicode_encoding

This function determines whether or not the type is or contains a unicode encoding. This means any encoding wherein
the entirety of Unicode, all 21 bits, can be represented without loss of information. For a full list of encodings which
are considered Unicode Encodings by this library, see the Known Unicode Encodings list.

This function checks for 2 things.

• It checks to see if the call encoding.contains_unicode_encoding() is well-formed and returns a boolean
value. If this is the case, it calls encoding.contains_unicode_encoding() and returns that value.

• It looks to see if the provided encoding has a member type called ::is_unicode_encoding. If this is the
case, then it returns is_unicode_encoding_v<Type>.

If none of these work, then it returns false.

template<typename _Encoding>
constexpr bool ztd::text::contains_unicode_encoding(const _Encoding &__encoding) noexcept

Whether or not the provided encoding is a Unicode encoding.

Remark

366 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This function first checks if there is a function called contains_unicode_encoding . If it is present, then it
returns the value of that function directly. Otherwise, it checks if ztd::text::is_unicode_encoding_v is true for
the provided __encoding . If that’s the case, then true is returned. Otherwise, it assumes the encoding is not
a Unicode-compatible encoding and returns false.

Parameters
__encoding – [in] The encoding to query.

is_unicode_code_point

This checks if the provided type is a unicode_code_point.

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Note there are some expectations of unicode code points. If your type violates these expectations then
code depending on them is free to execute Undefined Behavior.

template<typename _Type>

class is_unicode_code_point : public std::integral_constant<bool,
::std::is_same_v<::ztd::remove_cvref_t<_Type>, char32_t> || ::std::is_same_v<::ztd::remove_cvref_t<_Type>,
__txt_impl::__unicode_code_point> || is_unicode_scalar_value_v<::ztd::remove_cvref_t<_Type>>>

template<typename _Type>

constexpr bool ztd::text::is_unicode_code_point_v =
is_unicode_code_point<::ztd::remove_cvref_t<_Type>>::value

is_unicode_scalar_value

This checks if the provided type is a unicode_scalar_value.

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Note there are some expectations of scalar value types. If your type violates these expectations then
code depending on them is free to execute Undefined Behavior.

template<typename _Type>

class is_unicode_scalar_value : public std::integral_constant<bool,
::std::is_same_v<::ztd::remove_cvref_t<_Type>, __txt_impl::__unicode_scalar_value>>

template<typename _Type>

1.8. API Reference 367

ztd.text, Release 0.0.0

constexpr bool ztd::text::is_unicode_scalar_value_v =
is_unicode_scalar_value<::ztd::remove_cvref_t<_Type>>::value

is_(bitwise_)transcoding_compatible

This classification checks if two encodings are compatible, or bitwise compatible. The heuristic for normal compati-
bility is simple:

• it checks if the two encodings are identical;

• it checks if the two encodings are near-identical derivations of one another (e.g., UTF-8 being converted to
MUTF-8 (but not in the other direction)); or,

• it checks if the code point types between the two encodings are the same, or if they are both some form of unicode
code point.

This type specifically uses the first type as the From encoding (e.g., the one to decode the input code unit sequence)
and the second type as the To encoding (e.g., the one to encode the intermediate decoded code point sequence).

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Specializing this type for types which are not either transcoding compatible or bitwise compatible can
result in Undefined Behavior within the library.

template<typename _From, typename _To>

class is_transcoding_compatible : public std::integral_constant<bool,
__txt_detail::__is_bitwise_transcoding_compatible_v<_From, _To>>

Checks whether or not the specified _From encoding can be transcoded to the _To encoding without invoking a
lossy conversion when using the intermediate code points.

Remark

First, it checks if the encodings are bitwise compatible with one another (e.g., transcoding ASCII to UTF-8). If
that is not the case, then it checks if the two encodings are just identical. Finally, it checks if the code point types
are the same or if it’s putting unicode scalar values into unicode code points (which is valid one way, but not
the other way since scalar values do not allow surrogates). If none of these are true, then, the intermediate code
point likely cannot convert between the two losslessly.

Template Parameters

• _From – The encoding that is going to decode the input code units into the intermediate code
points.

• _To – The encoding that is going to encode the intermediate code points into the final code
units.

template<typename _From, typename _To>

368 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr bool ztd::text::is_transcoding_compatible_v = is_transcoding_compatible<_To, _From>::value
An alias of the inner value for ztd::text::is_transcoding_compatible.

template<typename _From, typename _To>

class is_bitwise_transcoding_compatible : public std::integral_constant<bool,
__txt_detail::__is_bitwise_transcoding_compatible_v<_From, _To>>

Checks whether or not the specified _From encoding can be transcoded to the _To encoding without by form of
bit copying.

Template Parameters

• _From – The encoding that is going to decode the input code units into the intermediate code
points.

• _To – The encoding that is going to encode the intermediate code points into the final code
units.

template<typename _From, typename _To>

constexpr bool ztd::text::is_bitwise_transcoding_compatible_v =
is_bitwise_transcoding_compatible<::ztd::remove_cvref_t<_From>, ::ztd::remove_cvref_t<_To>>::value

An alias of the inner value for ztd::text::is_transcoding_compatible.

is_input_error_skippable

For an encoding object encoding, it checks that there exists a function that can be called with the format encoding.
skip_input_error(result), where result is either a ztd::text::decode_result<. . .> (for decoding operations
which have failed) and ztd::text::encode_result<. . .> (for encoding operations which have failed). This allows an
encoding to control precisely how to move ahead with the input when a problem is encountered.

template<typename _Encoding, typename _Result, typename _InputProgress, typename _OutputProgress>

class is_input_error_skippable : public std::integral_constant<bool,
is_detected_v<__txt_detail::__detect_skip_input_error, _Encoding, _Result, _InputProgress, _OutputProgress>>

Whether or not the given _Encoding has a function called skip_input_error that takes the given _Result
type with the given _InputProgress and _OutputProgress types.

Remark

This is used by ztd::text::replacement_handler and ztd::text::skip_handler to pass over malformed input when
it happens.

Template Parameters

• _Encoding – The encoding that may contain the skip_input_error function.

• _Result – The result type to check if the input is callable.

• _InputProgress – The input progress type passed in to the error handler to be forwarded
to the skip input error.

• _OutputProgress – The output progress type passed in to the error handler to be forwarded
to the skip input error.

1.8. API Reference 369

ztd.text, Release 0.0.0

template<typename _Encoding, typename _Result, typename _InputProgress, typename _OutputProgress>

constexpr bool ztd::text::is_input_error_skippable_v = is_input_error_skippable<_Encoding, _Result,
_InputProgress, _OutputProgress>::value

An alias of the inner value for ztd::text::is_input_error_skippable.

is_self_synchronizing_code

An encoding – after experiencing an error or when being dropped into the middle – can seek out the start of the next
sequence of well-formed input unambiguously, compared with other encodings that reuse bit patterns from the first
matching code unit / byte in subsequent code units / bytes in that pattern. This becomes a property of the encoding,
and is therefore called self synchronizing. Self synchronizing codes are frequently considered superior when there is a
lack of context.

The primary Unicode encodings are self synchronizing, but other versions both proprietary and not may fail to be
self-synchronizing such as UTF-7.

template<typename _Type>

class is_self_synchronizing_code : public
__is_self_synchronizing_code_sfinae<::ztd::remove_cvref_t<_Type>>

Checks whether not an encoding has distinct sequences that can be identified unambiguously from anywhere
within a larger sequence. This implies that the start of any given sequence — including sequences that are
a single input unit — can be reliably identified even in a stream full of errors.

Template Parameters
_Type –

template<typename _Type>

constexpr bool ztd::text::is_self_synchronizing_code_v =
is_self_synchronizing_code<::ztd::remove_cvref_t<_Type>>::value

An alias for ztd::is_self_synchronizing_code’s inner value.

Template Parameters
_Type – The encoding type to check.

default_code_point_encoding

Picks the default encoding for the given code point type. In all cases, this just points a given code point type to
ztd::text::utf8. Errors if there is no default association.

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template.
Your specialization must have a type definition named type (as in, using type = ...; or typedef . . . type;`) inside
of the class specialization that is public:ly accessible. Note that specializing any type not explicitly marked with this
notice is Undefined Behavior.

template<typename _Type>

class default_code_point_encoding : public __default_code_point_encoding<_Type, false>
The default encoding associated with a given code point type, that serves as either input to an encode operation
or output from decode operation.

Template Parameters
_Type – The code point type, with no cv-qualifiers

370 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Type>

using ztd::text::default_code_point_encoding_t = typename default_code_point_encoding<_Type>::type
A typename alias for ztd::text::default_code_point_encoding.

Template Parameters
_Type – The code point type, with no cv-qualifiers

template<typename _Type>

class default_consteval_code_point_encoding : public __default_code_point_encoding<_Type, true>
The default encoding associated with a given code point type, that serves as either input to an encode operation
or output from decode operation. This uses additional information that this is at compile time, not run time, to
help make a decision as to what to do.

Template Parameters
_Type – The code point type, with no cv-qualifiers

template<typename _Type>

using ztd::text::default_consteval_code_point_encoding_t = typename
default_consteval_code_point_encoding<_Type>::type

A typename alias for ztd::text::default_consteval_code_point_encoding.

Template Parameters
_Type – The code point type, with no cv-qualifiers

default_code_unit_encoding

Picks the default encoding for the given code unit type (for both run time, and compile time with the appropriately
selected version of this property). The default association table is below. Errors if there is no default association.

Note: User Specializations: ✓✓✓ Okay! You can add other types to this classification by specializing the class template.
Your specialization must have a type definition named type (as in, using type = ...; or typedef . . . type;`) inside
of the class specialization that is public:ly accessible. Note that specializing any type not explicitly marked with this
notice is Undefined Behavior.

Type Encoding
signed char ztd::text::basic_ascii<signed char>
char ztd::text::execution
char (compile time) ztd::text::literal
wchar_t ztd::text::wide_execution
wchar_t (compile time) ztd::text::wide_literal
char8_t ztd::text::basic_utf8<char8_t>
ztd::uchar8_t ztd::text::basic_utf8<uchar8_t>
std::byte ztd::text::basic_utf8<std::byte>
char16_t ztd::text::utf16
char32_t ztd::text::utf32

template<typename _Type>

class default_code_unit_encoding : public __default_code_unit_encoding<_Type, false>

1.8. API Reference 371

ztd.text, Release 0.0.0

The default encoding associated with a given code unit type, that serves as either input to a decode operation or
output from an encode operation.

Template Parameters
_Type – The code unit type, with no cv-qualifiers

template<typename _Type>

using ztd::text::default_code_unit_encoding_t = typename default_code_unit_encoding<_Type>::type
A typename alias for ztd::text::default_code_unit_encoding.

Template Parameters
_Type – The code unit type, with no cv-qualifiers

template<typename _Type>

class default_consteval_code_unit_encoding : public __default_code_unit_encoding<_Type, true>
The default encoding associated with a given code unit type, that serves as either input to a decode operation or
output from an encode operation. This uses the additional information that this is compiletime, not runtime, to
help make the decision on what to do.

Template Parameters
_Type – The code unit type, with no cv-qualifiers

template<typename _Type>

using ztd::text::default_consteval_code_unit_encoding_t = typename
default_consteval_code_unit_encoding<_Type>::type

A typename alias for ztd::text::default_consteval_code_unit_encoding.

Template Parameters
_Type – The code unit type, with no cv-qualifiers

1.8.7 Result Types, Status Codes and Quality Aides

pivot

template<typename>

class pivot

encoding_error

enum class ztd::text::encoding_error : int
Describes a failure to encode, decode, transcode, or count, for four core various reasons.

Remark

This does not cover specific failures, like if a sequence was overlong (e.g., UTF-8) or if an encode operation
produced an uunpaired surrogate value (e.g. UTF-16).

Values:

372 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

enumerator ok
The okay status; everything is fine.

Remark

This does not necessarily mean an error handler was not called. An error handler can set the error code to
ztd::text::encoding_error::ok after performing corrective action: see ztd::text::replacement_handler_t for
an example.

enumerator invalid_sequence
Input contains ill-formed sequences. This means there were available units of input to read, but what was
read resulted in an error.

enumerator incomplete_sequence
Input contains incomplete sequences. This means that the input was exhausted, without finding an invalid
sequence, and therefore more input may be required.

Remark

Depending on context, this may or may not be an error in your use case (e.g., reading part of an incomplete
network buffer and waiting for more). See ztd::text::basic_incomplete_handler as a way to aid with this
use case.

enumerator insufficient_output_space
Output cannot receive the successfully encoded or decoded sequence. This means that, while there were
no invalid or incomplete sequences in the input, the output ran out of space to receive it.

Remark

Provide a bigger storage area or guarantee that it meets the minimum required size for potential output. This
can be queried for an encoding by using ztd::text::max_code_points_v<the_encoding> for code points, and
ztd::text::max_code_units_v<the_encoding> for code units.

inline constexpr ::std::string_view ztd::text::to_name(encoding_error __error_code)
Converts an encoding_error to a string value.

Remark

If a value outside of the allowed encoding_error is passed, then undefined behavior happens.

Returns
A null-terminated string_view to the data.

1.8. API Reference 373

ztd.text, Release 0.0.0

make_decode_state

This detects when the decode_state of a given encoding requires the encoding itself to make said state. If so, it
will call the decode_state‘s constructor with the encoding passed in. Otherwise, it simply default-constructs a state.
In either case, the constructed value is returned to the user.

The classification for this is done by ztd::text::is_decode_state_independent.

template<typename _Encoding>
constexpr decode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_decode_state(_Encoding

&__encoding)
noexcept

Constructs the decode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_decode_state_independent_v.

Parameters
__encoding – [in] The encoding object to use, if applicable, for the construction of the state.

template<typename _Encoding>
constexpr decode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_decode_state_with(_Encoding

&__encoding,
const en-
code_state_t<remove_cvref_t<_Encoding>>
&__en-
code_state)
noexcept

Constructs the decode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_decode_state_independent_v or whether it can be created by copy construction from the
given __encode_state.

Parameters

• __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

• __encode_state – [in] A preexisting state from the encoder.

make_encode_state

This detects when the encode_state of a given encoding requires the encoding itself to make said state. If so, it
will call the encode_state‘s constructor with the encoding passed in. Otherwise, it simply default-constructs a state.
In either case, the constructed value is returned to the user.

The classification for this is done by ztd::text::is_encode_state_independent.

template<typename _Encoding>
constexpr encode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_encode_state(_Encoding

&__encoding)
noexcept

Constructs the encode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_encode_state_independent_v.

Parameters
__encoding – [in] The encoding object to use, if applicable, for the construction of the state.

template<typename _Encoding>

374 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr encode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_encode_state_with(_Encoding
&__encoding,
const de-
code_state_t<remove_cvref_t<_Encoding>>
&__de-
code_state)
noexcept

Constructs the encode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_encode_state_independent_v or whether it can be created by copy construction from the
given __decode_state.

Parameters

• __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

• __decode_state – [in] A preexisting state from the decoder.

unicode_code_point

If ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE is turned on, this type definition points to an internal
class which implements the invariant of being a unicode code point. Otherwise, it is simply char32_t.

A unicode code point is stored as an at least 32-bit value, but may occupy more space depending on the architecture.
It requires 21 bits of space to fit the required unicode code point definition. If the distinct type is used, then this type
will trap (abort/assert) if the value is greater than the allowed 21 bits.

typedef char32_t ztd::text::unicode_code_point

Internal Type

Warning: Names with double underscores, and within the __*detail and __*impl namespaces are reserved
for the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any
point in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

class __unicode_code_point
A 32-bit value that is within the allowed 21 bits of Unicode. Can be one of the surrogate values.

Public Functions

__unicode_code_point() noexcept = default
Constructs a code point value of indeterminate value (if no parentheses/brackets are provided) or with the
value 0 (if parentheses/brackets are provided for intentional value initialization).

inline constexpr __unicode_code_point(char32_t __code_point) noexcept
Constructs a code point value with the given code point value.

Remark

1.8. API Reference 375

ztd.text, Release 0.0.0

inline explicit constexpr operator char32_t() const noexcept
An explicit conversion to a typical char32_t value, bit-compatible with a normal code point value.

inline constexpr const char32_t &value() const & noexcept
Retrieves the underlying value.

inline constexpr char32_t &value() & noexcept
Retrieves the underlying value.

inline constexpr char32_t &&value() && noexcept
Retrieves the underlying value.

unicode_scalar_value

If ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE is turned on, this type definition points to an internal
class which implements the invariant of being a unicode scalar value. Otherwise, it is simply char32_t.

A unicode scalar value is stored as an at least 32-bit value, but may occupy more space depending on the architecture.
It requires 21 bits of space to fit the required unicode code point definition. If the distinct type is used, then this type
will trap (abort/assert) if the value is greater than the allowed 21 bits, or if the value results in one of the Unicode
Surrogate Pair values used for UTF-16 encoding and decoding. Not recommended for ztd::text::wtf8 usage, as that
encoding produces Unicode Surrogate Pair values intentionally.

typedef char32_t ztd::text::unicode_scalar_value

Internal Type

Warning: Names with double underscores, and within the __*detail and __*impl namespaces are reserved
for the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any
point in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

class __unicode_scalar_value
A 32-bit value that is within the allowed 21 bits of Unicode and is not one of the Surrogate values.

Remark

The invariant is enforced with an assertion in normal modes, and can optionally be enforced by turning on
ZTD_TEXT_UNICODE_SCALAR_VALUE_INVARIANT_ABORT.

376 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Functions

__unicode_scalar_value() noexcept = default
Constructs a scalar value of indeterminate value (if no parentheses/brackets are provided) or with the value
0 (if parentheses/brackets are provided for intentional value initialization).

inline constexpr __unicode_scalar_value(char32_t __code_point) noexcept
Constructs a scalar value with the given code point value.

Remark

inline explicit constexpr operator char32_t() const noexcept
An explicit conversion to a typical char32_t value, bit-compatible with a normal code point value.

inline constexpr const char32_t &value() const & noexcept
Retrieves the underlying value.

inline constexpr char32_t &value() & noexcept
Retrieves the underlying value.

inline constexpr char32_t &&value() && noexcept
Retrieves the underlying value.

stateless_decode_result

template<typename _Input, typename _Output>

class stateless_decode_result
The result of all decode operations from encoding objects and higher-level calls (such as ztd_text_decode).

Subclassed by decode_result< _Input, _Output, _State >

Public Functions

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::stateless_decode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_decode_result(const stateless_decode_result<_ArgInput, _ArgOutput>

&__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::stateless_decode_result,
_Input, _ArgInput, _Output, _ArgOutput>)

Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::stateless_decode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>

1.8. API Reference 377

ztd.text, Release 0.0.0

inline constexpr stateless_decode_result(stateless_decode_result<_ArgInput, _ArgOutput>
&&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::stateless_decode_result,
_Input, _ArgInput, _Output, _ArgOutput>)

Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr stateless_decode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_decode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::decode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_decode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __error_count)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> && ::std::is_nothrow_constructible_v<_Output,
_ArgOutput>)

Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decode operation, taken as the first of either
the decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

378 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
The number of times an error occurred in the processed input text.

decode_result

template<typename _Input, typename _Output, typename _State>

class decode_result : public ztd::text::stateless_decode_result<_Input, _Output>
The result of all decode operations from encoding objects and higher-level calls (such as ztd_text_decode).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgState,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::decode_result, _Input, _ArgInput,
_Output, _ArgOutput, _State, _ArgState>()>* = nullptr>
inline constexpr decode_result(const decode_result<_ArgInput, _ArgOutput, _ArgState> &__other) noex-

cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::decode_result,
_Input, _ArgInput, _Output, _ArgOutput, _State, _ArgState>)

Constructs a ztd::text::decode_result from a previous decode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::decode_result, _Input, _ArgInput,
_Output, _ArgOutput, _State, _ArgState>()>* = nullptr>
inline constexpr decode_result(decode_result<_ArgInput, _ArgOutput, _ArgState> &&__other) noex-

cept(__txt_detail::__result_type_move_noexcept<::ztd::text::decode_result,
_Input, _ArgInput, _Output, _ArgOutput, _State, _ArgState>)

Constructs a ztd::text::decode_result from a previous decode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>

1.8. API Reference 379

ztd.text, Release 0.0.0

inline constexpr decode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,
encoding_error __error_code = encoding_error::ok)

Constructs a ztd::text::decode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the decode operation.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr decode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __error_count)
Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the decode operation.

• __error_code – [in] The error code for the decode operation, taken as the first of either
the decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

::ztd::reference_wrapper<_State> state
The state of the associated Encoding used for decoding input code units to code points.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

380 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
The number of times an error occurred in the processed input text.

stateless_encode_result

template<typename _Input, typename _Output>

class stateless_encode_result
The result of all encode operations from encoding objects and higher-level calls (such as ztd_text_encode).

Subclassed by encode_result< _Input, _Output, _State >

Public Functions

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::stateless_encode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_encode_result(const stateless_encode_result<_ArgInput, _ArgOutput>

&__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::stateless_encode_result,
_Input, _ArgInput, _Output, _ArgOutput>())

Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::stateless_encode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_encode_result(stateless_encode_result<_ArgInput, _ArgOutput>

&&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::stateless_encode_result,
_Input, _ArgInput, _Output, _ArgOutput>())

Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_encode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_encode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::encode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

1.8. API Reference 381

ztd.text, Release 0.0.0

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_encode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __error_count)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> && ::std::is_nothrow_constructible_v<_Output,
_ArgOutput>)

Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, if any.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

382 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

encode_result

template<typename _Input, typename _Output, typename _State>

class encode_result : public ztd::text::stateless_encode_result<_Input, _Output>
The result of all encode operations from encoding objects and higher-level calls (such as ztd_text_encode).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgState,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::encode_result, _Input, _ArgInput,
_Output, _ArgOutput, _State, _ArgState>()>* = nullptr>
inline constexpr encode_result(const encode_result<_ArgInput, _ArgOutput, _ArgState> &__other) noex-

cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::encode_result,
_Input, _ArgInput, _Output, _ArgOutput, _State, _ArgState>())

Constructs a ztd::text::encode_result from a previous encode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::encode_result, _Input, _ArgInput,
_Output, _ArgOutput, _State, _ArgState>()>* = nullptr>
inline constexpr encode_result(encode_result<_ArgInput, _ArgOutput, _ArgState> &&__other) noex-

cept(__txt_detail::__result_type_move_noexcept<::ztd::text::encode_result,
_Input, _ArgInput, _Output, _ArgOutput, _State, _ArgState>())

Constructs a ztd::text::encode_result from a previous encode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr encode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code = encoding_error::ok)
Constructs a ztd::text::encode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the encode operation.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr encode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __error_count) noexcept
Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

1.8. API Reference 383

ztd.text, Release 0.0.0

• __state – [in] The state related to the Encoding that performed the encode operation.

• __error_code – [in] The error code for the encode operation, if any.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

::ztd::reference_wrapper<_State> state
The state of the associated Encoding used for decoding input code points to code units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_transcode_result

template<typename _Input, typename _Output>

class stateless_transcode_result
The result of transcoding operations (such as ztd::text::transcode) that specifically do not include a reference to
the state.

Subclassed by pivotless_transcode_result< _Input, _Output, _FromState, _ToState >

384 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Functions

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::stateless_transcode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_transcode_result(const stateless_transcode_result<_ArgInput, _ArgOutput>

&__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::stateless_transcode_result,
_Input, _ArgInput, _Output, _ArgOutput>())

Constructs a ztd::text::stateless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::stateless_transcode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_transcode_result(stateless_transcode_result<_ArgInput, _ArgOutput>

&&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::stateless_transcode_result,
_Input, _ArgInput, _Output, _ArgOutput>)

Constructs a ztd::text::stateless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_transcode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::stateless_transcode_result, defaulting the error code to
ztd::text::encoding_error::ok if not provided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __error_count)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> &&
::std::is_nothrow_constructible_v<_Output, _ArgOutput>)

Constructs a ztd::text::stateless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

1.8. API Reference 385

ztd.text, Release 0.0.0

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

pivotless_transcode_result

template<typename _Input, typename _Output, typename _FromState, typename _ToState>

class pivotless_transcode_result : public ztd::text::stateless_transcode_result<_Input, _Output>
The result of transcoding operations (such as ztd::text::transcode with the state argument provided).

Subclassed by transcode_result< _Input, _Output, _FromState, _ToState, _Pivot >

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::pivotless_transcode_result, _Input,
_ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState>()>* = nullptr>

386 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr pivotless_transcode_result(const pivotless_transcode_result<_ArgInput, _ArgOutput,
_ArgFromState, _ArgToState> &__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::pivotless_transcode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState,
_ArgFromState, _ToState, _ArgToState>())

Constructs a ztd::text::pivotless_transcode_result from a previous pivotless_transcode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::pivotless_transcode_result, _Input,
_ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState>()>* = nullptr>
inline constexpr pivotless_transcode_result(pivotless_transcode_result<_ArgInput, _ArgOutput,

_ArgFromState, _ArgToState> &&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::pivotless_transcode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState,
_ArgFromState, _ToState, _ArgToState>())

Constructs a ztd::text::pivotless_transcode_result from a previous pivotless_transcode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState>
inline constexpr pivotless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,

_ArgFromState &&__from_state, _ArgToState
&&__to_state, encoding_error __error_code =
encoding_error::ok)

Constructs a ztd::text::pivotless_transcode_result, defaulting the error code to
ztd::text::encoding_error::ok if not provided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the transcoding operation, taken as the first of
either the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState>
inline constexpr pivotless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,

_ArgFromState &&__from_state, _ArgToState
&&__to_state, encoding_error __error_code, ::std::size_t
__error_count)

Constructs a ztd::text::pivotless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

1.8. API Reference 387

ztd.text, Release 0.0.0

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

::ztd::reference_wrapper<_FromState> from_state
A reference to the state of the associated Encoding used for decoding input code units to intermediate code
points.

::ztd::reference_wrapper<_ToState> to_state
A reference to the state of the associated Encoding used for encoding intermediate code points to code
units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

388 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

transcode_result

template<typename _Input, typename _Output, typename _FromState, typename _ToState, typename _Pivot>

class transcode_result : public ztd::text::pivotless_transcode_result<_Input, _Output, _FromState, _ToState>
The result of low-level transcoding operations (such as ztd::text::transcode_into with the pivot provided as an
argument).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::transcode_result, _Input,
_ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState, _Pivot, _ArgPivot>()>*
= nullptr>
inline constexpr transcode_result(const transcode_result<_ArgInput,

_ArgOutput, _ArgFromState, _ArgToState, _ArgPivot> &__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::transcode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState,
_ToState, _ArgToState, _Pivot, _ArgPivot>())

Constructs a ztd::text::pivotless_transcode_result from a previous pivotless_transcode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::transcode_result, _Input,
_ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState, _Pivot, _ArgPivot>()>*
= nullptr>
inline constexpr transcode_result(transcode_result<_ArgInput, _ArgOutput, _ArgFromState,

_ArgToState, _ArgPivot> &&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::transcode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState,
_ToState, _ArgToState, _Pivot, _ArgPivot>())

Constructs a ztd::text::pivotless_transcode_result from a previous pivotless_transcode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot>
inline constexpr transcode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgFromState

&&__from_state, _ArgToState &&__to_state, encoding_error
__error_code, ::std::size_t __error_count, _ArgPivot &&__pivot,
encoding_error __pivot_error_code, ::std::size_t __pivot_error_count)

Constructs a ztd::text::pivotless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

1.8. API Reference 389

ztd.text, Release 0.0.0

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the transcode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

• __pivot – [in] The pivot for this transcode operation.

• __pivot_error_code – [in] The error code for the decode step of the transcode oepration,
if it failed.

• __pivot_error_count – [in] Whether or not an error was handled during the
decode step of the transcode operation. Some error handlers are corrective (see
ztd::text::replacement_handler_t), and so the error code is not enough to determine if the
handler was invoked. This allows the value to be provided directly when constructing this
result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Pivot pivot
The range used to hold the intermediate pivot transcoding units.

encoding_error pivot_error_code
The kind of error that occured, if any, for the intermediate pivot.

::std::size_t pivot_error_count
Whether or not the error handler for the pivot point was invoked, regardless of if the pivot_error_code
is set or not set to ztd::text::encoding_error::ok.

::ztd::reference_wrapper<_FromState> from_state
A reference to the state of the associated Encoding used for decoding input code units to intermediate code
points.

::ztd::reference_wrapper<_ToState> to_state
A reference to the state of the associated Encoding used for encoding intermediate code points to code
units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

390 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_recode_result

template<typename _Input, typename _Output>

class stateless_recode_result
The result of transcoding operations (such as ztd::text::recode) that specifically do not include a reference to the
state.

Subclassed by pivotless_recode_result< _Input, _Output, _FromState, _ToState >

Public Functions

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::stateless_recode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_recode_result(const stateless_recode_result<_ArgInput, _ArgOutput>

&__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::stateless_recode_result,
_Input, _ArgInput, _Output, _ArgOutput>())

Constructs a ztd::text::stateless_recode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::stateless_recode_result, _Input,
_ArgInput, _Output, _ArgOutput>()>* = nullptr>
inline constexpr stateless_recode_result(stateless_recode_result<_ArgInput, _ArgOutput>

&&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::stateless_recode_result,
_Input, _ArgInput, _Output, _ArgOutput>)

Constructs a ztd::text::stateless_recode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput>

1.8. API Reference 391

ztd.text, Release 0.0.0

inline constexpr stateless_recode_result(_ArgInput &&__input, _ArgOutput &&__output,
encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_recode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::stateless_recode_result, defaulting the error code to ztd::text::encoding_error::ok
if not provided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_recode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __error_count)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> && ::std::is_nothrow_constructible_v<_Output,
_ArgOutput>)

Constructs a ztd::text::stateless_recode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

392 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

recode_result

template<typename _Input, typename _Output, typename _FromState, typename _ToState, typename _Pivot>

class recode_result : public ztd::text::pivotless_recode_result<_Input, _Output, _FromState, _ToState>
The result of low-level transcoding operations (such as ztd::text::recode_into with the pivot provided as an argu-
ment).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot,
::std::enable_if_t<__txt_detail::__result_type_copy_constraint<::ztd::text::recode_result, _Input, _ArgInput,
_Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState, _Pivot, _ArgPivot>()>* = nullptr>
inline constexpr recode_result(const recode_result<_ArgInput, _ArgOutput, _ArgFromState, _ArgToState,

_ArgPivot> &__other) noex-
cept(__txt_detail::__result_type_copy_noexcept<::ztd::text::recode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState,
_ToState, _ArgToState, _Pivot, _ArgPivot>())

Constructs a ztd::text::pivotless_recode_result from a previous pivotless_recode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot,
::std::enable_if_t<__txt_detail::__result_type_move_constraint<::ztd::text::recode_result, _Input, _ArgInput,
_Output, _ArgOutput, _FromState, _ArgFromState, _ToState, _ArgToState, _Pivot, _ArgPivot>()>* = nullptr>
inline constexpr recode_result(recode_result<_ArgInput, _ArgOutput, _ArgFromState, _ArgToState,

_ArgPivot> &&__other) noex-
cept(__txt_detail::__result_type_move_noexcept<::ztd::text::recode_result,
_Input, _ArgInput, _Output, _ArgOutput, _FromState, _ArgFromState,
_ToState, _ArgToState, _Pivot, _ArgPivot>())

Constructs a ztd::text::pivotless_recode_result from a previous pivotless_recode_result.

Parameters
__other – [in] A different but related result type.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState, typename _ArgPivot>
inline constexpr recode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgFromState

&&__from_state, _ArgToState &&__to_state, encoding_error
__error_code, ::std::size_t __error_count, _ArgPivot &&__pivot,
encoding_error __pivot_error_code, ::std::size_t __pivot_error_count)

1.8. API Reference 393

ztd.text, Release 0.0.0

Constructs a ztd::text::pivotless_recode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the recode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

• __pivot – [in] The pivot that was used for the recode operation.

• __pivot_error_code – [in] The error code for the decode step of the recode oepration,
if it failed.

• __pivot_error_count – [in] Whether or not an error was handled during the
decode step of the recode operation. Some error handlers are corrective (see
ztd::text::replacement_handler_t), and so the error code is not enough to determine if the
handler was invoked. This allows the value to be provided directly when constructing this
result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Pivot pivot
The range used to hold the intermediate pivot transcoding units.

encoding_error pivot_error_code
The kind of error that occured, if any, for the intermediate pivot.

::std::size_t pivot_error_count
Whether or not the error handler for the pivot point was invoked, regardless of if the pivot_error_code
is set or not set to ztd::text::encoding_error::ok.

::ztd::reference_wrapper<_FromState> from_state
A reference to the state of the associated Encoding used for decoding input code units to intermediate code
points.

394 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

::ztd::reference_wrapper<_ToState> to_state
A reference to the state of the associated Encoding used for encoding intermediate code points to code
units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_count_result

template<typename _Input>

class stateless_count_result
The result of counting operations (such as ztd_text_count_as_encoded and ztd_text_count_as_encoded) that
specifically do not include a reference to the state.

Subclassed by count_result< _Input, _State >, count_transcode_result< _Input, _FromState, _ToState >

Public Functions

template<typename _ArgInput>
inline constexpr stateless_count_result(_ArgInput &&__input, ::std::size_t __count, encoding_error

__error_code = encoding_error::ok)
Constructs a ztd::text::stateless_count_result, defaulting the error code to ztd::text::encoding_error::ok if
not provided.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput>
inline constexpr stateless_count_result(_ArgInput &&__input, ::std::size_t __count, encoding_error

__error_code, ::std::size_t __error_count)
Constructs a ztd::text::stateless_count_result with the provided parameters and information, including
whether or not an error was handled.

1.8. API Reference 395

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

::std::size_t count
The number of code units or code points counted successfully, so far.

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
The number of times an error occurred in the processed input text.

Remark

This number may be greater than one despite error_code being ztd::text::encoding_error::ok, as
some error handlers will encounter an error but “fix” the text (e.g. ztd::text::skip_handler_t or
ztd::text::replacement_handler_t).

396 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

count_result

template<typename _Input, typename _State>

class count_result : public ztd::text::stateless_count_result<_Input>
The result of counting operations (such as ztd_text_count_as_encoded and ztd_text_count_as_encoded).

Public Functions

template<typename _ArgInput, typename _ArgState>
inline constexpr count_result(_ArgInput &&__input, ::std::size_t __count, _ArgState &&__state,

encoding_error __error_code = encoding_error::ok)
Constructs a ztd::text::count_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __state – [in] The state related to the encoding for the counting operation.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgState>
inline constexpr count_result(_ArgInput &&__input, ::std::size_t __count, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __error_count)
Constructs a ztd::text::count_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __state – [in] The state related to the encode operation that counted the code units.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __error_count – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns
Simply checks whether error_count is greater than 0.

1.8. API Reference 397

ztd.text, Release 0.0.0

Public Members

::ztd::reference_wrapper<_State> state
A reference to the state of the associated Encoding used for counting.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

::std::size_t count
The number of code units or code points counted successfully, so far.

encoding_error error_code
The kind of error that occured, if any.

::std::size_t error_count
The number of times an error occurred in the processed input text.

Remark

This number may be greater than one despite error_code being ztd::text::encoding_error::ok, as
some error handlers will encounter an error but “fix” the text (e.g. ztd::text::skip_handler_t or
ztd::text::replacement_handler_t).

stateless_validate_result

template<typename _Input>

class stateless_validate_result
The result of valdation operations (such as ztd_text_validate_decodable_as and ztd_text_validate_encodable_as)
that specifically do not include a reference to the state.

Subclassed by validate_pivotless_transcode_result< _Input, _DecodeState, _EncodeState >, validate_result<
_Input, _State >

Public Functions

template<typename _ArgInput>
inline constexpr stateless_validate_result(_ArgInput &&__input, bool __is_valid)

Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

398 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns
Whether or not the result is valid or not.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

validate_result

template<typename _Input, typename _State>

class validate_result : public ztd::text::stateless_validate_result<_Input>
The result of validation operations (such as ztd_text_validate_decodable_as and
ztd_text_validate_encodable_as).

Public Functions

template<typename _ArgInput, typename _ArgState>
inline constexpr validate_result(_ArgInput &&__input, bool __is_valid, _ArgState &&__state)

Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

• __state – [in] The state related to the encoding that was used to do validation.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns
Whether or not the result is valid or not.

1.8. API Reference 399

ztd.text, Release 0.0.0

Public Members

::ztd::reference_wrapper<_State> state
A reference to the state of the associated Encoding used for validating the input.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

validate_pivotless_transcode_result

template<typename _Input, typename _DecodeState, typename _EncodeState>

class validate_pivotless_transcode_result : public ztd::text::stateless_validate_result<_Input>
The result of a transcoding validation operations (e.g. from ztd_text_validate_transcodable_as).

Subclassed by validate_transcode_result< _Input, _DecodeState, _EncodeState, _Pivot >

Public Functions

template<typename _ArgInput, typename _ArgFromState, typename _ArgToState>
inline constexpr validate_pivotless_transcode_result(_ArgInput &&__input, bool __is_valid,

_ArgFromState &&__from_state, _ArgToState
&&__to_state)

Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

• __from_state – [in] The state related to the encoding that was used to do validation.

• __to_state – [in] The state related to the encoding that was used to do validation.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns
Whether or not the result is valid or not.

400 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Members

::ztd::reference_wrapper<_DecodeState> from_state
A reference to the state of the associated Encoding used for validating the input.

::ztd::reference_wrapper<_EncodeState> to_state
A reference to the state of the associated Encoding used for validating the input.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

validate_transcode_result

template<typename _Input, typename _DecodeState, typename _EncodeState, typename _Pivot>

class validate_transcode_result : public ztd::text::validate_pivotless_transcode_result<_Input, _DecodeState,
_EncodeState>

The result of a transcoding validation operations (e.g. from ztd_text_validate_transcodable_as).

Public Functions

template<typename _ArgInput, typename _ArgFromState, typename _ArgToState, typename
_ArgPivot>
inline constexpr validate_transcode_result(_ArgInput &&__input, bool __is_valid, _ArgFromState

&&__from_state, _ArgToState &&__to_state, _ArgPivot
&&__pivot)

Constructs a ztd::text::pivot_validate_result.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

• __from_state – [in] The state related to the encoding that was used to do validation.

• __to_state – [in] The state related to the encoding that was used to do validation.

• __pivot – [in] The pivot range to store.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns
Whether or not the result is valid or not.

1.8. API Reference 401

ztd.text, Release 0.0.0

Public Members

_Pivot pivot
The range used to hold the intermediate pivot transcoding units.

::ztd::reference_wrapper<_DecodeState> from_state
A reference to the state of the associated Encoding used for validating the input.

::ztd::reference_wrapper<_EncodeState> to_state
A reference to the state of the associated Encoding used for validating the input.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

skip_input_error

Utilizes ztd::text::is_input_error_skippable to check if a hypothetical encoding object encoding and a hypothetical
result object result can be utilized to call encoding.skip_input_error(result). Otherwise, it only skips forward by

It is particularly used with ztd::text::replacement_handler and ztd::text::skip_handler. You can use this function to
perform encoding-aware and encoding-specific skips for a given encode and decode operation. This is particularly use-
ful for Unicode encodings, as well as other variable-width encodings in the wild, which may be good to accommodate
for in your own error handlers.

template<typename _Encoding, typename _Result, typename _InputProgress, typename _OutputProgress>
constexpr auto ztd::text::skip_input_error(const _Encoding &__encoding, _Result &&__result, const

_InputProgress &__input_progress, const _OutputProgress
&__output_progress)
noexcept(::ztd::text::is_nothrow_skip_input_error_v<const
_Encoding&, _Result, const _InputProgress&, const
_OutputProgress&>)

Attempts to skip over an input error in the text.

"\xC0\x9F\x8D\xB7meow"

Remark

If there exists a well-formed function call of the form __encoding.skip_input_error(__result), it will
call that function. Otherwise, it will attempt to grab the input iterator and pre-increment it exactly once. The goal
for this is to provide functionality which can smartly skip over a collection of ill-formed code units or bytes in an
input sequence, rather than generated e.g. 3 different replacement characters for a mal-formed UTF-8 sequence.
For example, given this malformed wineglass code point as an input UTF-8 sequence:

when used in conjunction with ztd::text::utf8 (and similar), a proper decode/transcode call will error on \xC0’.
Then, this function skips until the’m’` input code unit, resulting in a leftover sequence of

“meow”.

402 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current result state of the encode or decode operation.

• __input_progress – [in] A contiguous range containing all of the (potentially) irreversibly
read input from an encoding operation.

• __output_progress – [in] A contiguous range containing all of the (potentially) irre-
versibly written output from an encoding operation.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
constexpr auto ztd::text::skip_utf32_input_error(_Result &&__result, const _InputProgress

&__input_progress, const _OutputProgress
&__output_progress) noexcept

Attempts to skip over an input error in the text.

Remark

This function is specifically for UTF-32 input, where e.g. multiple surrogates may be part of the incoming text
and the target encoding does not support that. Therefore, it will skip over every too-large codepoint, and every
surrogate pair codepoint, before stopping.

Parameters

• __result – [in] The current result state of the encode or decode operation.

• __input_progress – [in] A contiguous range containing all of the (potentially) irreversibly
read input from an encoding operation.

• __output_progress – [in] A contiguous range containing all of the (potentially) irre-
versibly written output from an encoding operation.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
constexpr auto ztd::text::skip_utf32_with_surrogates_input_error(_Result &&__result, const

_InputProgress &__input_progress,
const _OutputProgress
&__output_progress) noexcept

Attempts to skip over an input error in the text.

Remark

This function is specifically for UTF-32 input that also includes surrogate values as a valid option. Therefore, it
will skip over every too-large codepoint.

Parameters

• __result – [in] The current result state of the encode or decode operation.

• __input_progress – [in] A contiguous range containing all of the (potentially) irreversibly
read input from an encoding operation.

1.8. API Reference 403

ztd.text, Release 0.0.0

• __output_progress – [in] A contiguous range containing all of the (potentially) irre-
versibly written output from an encoding operation.

propagate_(transcode|transcode)_error

This helper function processes an error for a transcoding operation and shuffles a result through its decode step and
encode step error handlers. Nominally used after a solely decode portion of a transcode operation fails.

If the user is doing a direct conversion and can simply call the encode portion of the error handler directly, calling this
function can be skipped entirely by the user.

template<typename _Result, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_EncodeErrorHandler, typename _DecodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _Intermediate, typename _FromState>
constexpr auto propagate_recode_encode_error(_Output &&__output, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, encode_result<_ResultInput,
_Intermediate, _FromState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_DecodeErrorHandler &&__decode_error_handler, _ToState
&__to_state, _FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __encode_error_handler, and
__decode_error_handler and launders the ztd::text::encode_result through the __encode_error_handler.
The transformed encode result is then transformed to a ztd::text::decode_result before transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The result value that has an error in it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

404 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __decode_error_handler – [in] The error handler to mill the
__encode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

• __from_input_progress – [in] Any unread input characters in any intermediate between
the (failed) encode and decode operations.

• __from_output_progress – [in] Any unread intermediate output characters in any inter-
mediates between the (failed) encode and decode operations.

• __to_input_progress – [in] Any unread intermediate input characters in any intermediate
between the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_EncodeErrorHandler, typename _DecodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultIntermediate, typename _FromState>
constexpr auto propagate_recode_encode_error(_Output &&__output, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, encode_result<_ResultInput,
_ResultIntermediate, _FromState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_DecodeErrorHandler &&__decode_error_handler, _ToState
&__to_state, _FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __encode_error_handler, and
__decode_error_handler and launders the ztd::text::encode_result through the __encode_error_handler.
The transformed encode result is then transformed to a ztd::text::decode_result before transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The result value that has an error in it.

1.8. API Reference 405

ztd.text, Release 0.0.0

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __decode_error_handler – [in] The error handler to mill the
__encode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

• __from_input_progress – [in] Any unread input characters in any intermediate between
the (failed) encode and decode operations.

• __from_output_progress – [in] Any unread intermediate output characters in any inter-
mediates between the (failed) encode and decode operations.

• __to_input_progress – [in] Any unread intermediate input characters in any intermediate
between the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Result, typename _ToEncoding, typename _DecodeErrorHandler, typename
_ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename _ResultPivot,
typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_recode_decode_error(_ToEncoding &&__to_encoding, encode_result<_ResultInput,

_ResultPivot, _FromState> &&__encode_result,
decode_result<_ResultIntermediate, _ResultOutput, _ToState>
&&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Transcoding helper. Takes the given __to_encoding and __decode_error_handler and launders the failed
ztd::text::encode_result through it, producing a ztd::text::decode_result and transforming that into the desired
ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The encode result value that has an error in it.

• __decode_result – [in] The decode result value that has not yet been processed by the
decode error handler.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

406 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _ToEncoding, typename _DecodeErrorHandler, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultPivot, typename _FromState, typename
_ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_recode_decode_error(_ToEncoding &&__to_encoding, encode_result<_ResultInput,

_ResultPivot, _FromState> &&__encode_result,
decode_result<_ResultIntermediate, _ResultOutput, _ToState>
&&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Takes the given __to_encoding and __decode_error_handler and launders the failed
ztd::text::encode_result through it, producing a ztd::text::decode_result and transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side. Unlike it’s counterpart, this function does not take an _Result template
parameter and instead deduces the returned recode result type from inputs.

Parameters

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The result value that has an error on it.

• __decode_result – [in] The result value that has an error on it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Result, typename _Input, typename _Output, typename _FromEncoding, typename
_ToEncoding, typename _EncodeErrorHandler, typename _DecodeErrorHandler, typename _ToState,
typename _FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _Intermediate, typename _FromState>

1.8. API Reference 407

ztd.text, Release 0.0.0

constexpr auto propagate_recode_encode_error_with(_Input &&__input, _Output &&__output,
_FromEncoding &&__from_encoding, _ToEncoding
&&__to_encoding, encode_result<_ResultInput,
_Intermediate, _FromState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_DecodeErrorHandler &&__decode_error_handler,
_ToState &__to_state, _FromInputProgress
&&__from_input_progress, _FromOutputProgress
&&__from_output_progress, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __encode_error_handler, and
__decode_error_handler and launders the ztd::text::encode_result through the __encode_error_handler.
The transformed encode result is then transformed to a ztd::text::decode_result before transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __input – [in] The input view to be reading from.

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __result – [in] The result value that has an error in it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __decode_error_handler – [in] The error handler to mill the
__encode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

• __from_input_progress – [in] Any unread input characters in any intermediate between
the (failed) encode and decode operations.

• __from_output_progress – [in] Any unread intermediate output characters in any inter-
mediates between the (failed) encode and decode operations.

• __to_input_progress – [in] Any unread intermediate input characters in any intermediate
between the (failed) encode and decode operations.

408 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_EncodeErrorHandler, typename _DecodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultIntermediate, typename _FromState>
constexpr auto propagate_recode_encode_error_with(_Input &&__input, _Output &&__output,

_FromEncoding &&__from_encoding, _ToEncoding
&&__to_encoding, encode_result<_ResultInput,
_ResultIntermediate, _FromState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_DecodeErrorHandler &&__decode_error_handler,
_ToState &__to_state, _FromInputProgress
&&__from_input_progress, _FromOutputProgress
&&__from_output_progress, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __encode_error_handler, and
__decode_error_handler and launders the ztd::text::encode_result through the __encode_error_handler.
The transformed encode result is then transformed to a ztd::text::decode_result before transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __input – [in] The input view to be reading from.

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __result – [in] The result value that has an error in it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __decode_error_handler – [in] The error handler to mill the
__encode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

1.8. API Reference 409

ztd.text, Release 0.0.0

• __from_input_progress – [in] Any unread input characters in any intermediate between
the (failed) encode and decode operations.

• __from_output_progress – [in] Any unread intermediate output characters in any inter-
mediates between the (failed) encode and decode operations.

• __to_input_progress – [in] Any unread intermediate input characters in any intermediate
between the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Result, typename _Input, typename _ToEncoding, typename _DecodeErrorHandler,
typename _ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename
_ResultPivot, typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename
_ToState>
constexpr auto propagate_recode_decode_error_with(_Input &&__input, _ToEncoding &&__to_encoding,

encode_result<_ResultInput, _ResultPivot, _FromState>
&&__encode_result,
decode_result<_ResultIntermediate, _ResultOutput,
_ToState> &&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Transcoding helper. Takes the given __to_encoding and __decode_error_handler and launders the failed
ztd::text::encode_result through it, producing a ztd::text::decode_result and transforming that into the desired
ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact recode result type to use.

Parameters

• __input – [in] The input view to be read from.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The result value that has an error on it.

• __decode_result – [in] The result value that has an error on it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) encode and decode operations.

410 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Input, typename _ToEncoding, typename _DecodeErrorHandler, typename
_ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename _ResultPivot,
typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_recode_decode_error_with(_Input &&__input, _ToEncoding &&__to_encoding,

encode_result<_ResultInput, _ResultPivot, _FromState>
&&__encode_result,
decode_result<_ResultIntermediate, _ResultOutput,
_ToState> &&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _ToInputProgress
&&__to_input_progress, _ToOutputProgress
&&__to_output_progress) noexcept

Takes the given __to_encoding and __decode_error_handler and launders the failed
ztd::text::encode_result through it, producing a ztd::text::decode_result and transforming that into the
desired ztd::text::recode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by recode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::recode). This function at-
tempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side. Unlike it’s counterpart, this function does not take an _Result template
parameter and instead deduces the returned recode result type from inputs.

Parameters

• __input – [in] The input view to be read from.

• __to_encoding – [in] The desired encoding that performs the decode portion of the
transcoding step.

• __encode_result – [in] The result value that has an error on it.

• __decode_result – [in] The result value that has an error on it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the recode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) encode and decode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) encode and decode operations.

template<typename _Result, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_DecodeErrorHandler, typename _EncodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _Intermediate, typename _FromState>

1.8. API Reference 411

ztd.text, Release 0.0.0

constexpr auto propagate_transcode_decode_error(_Output &&__output, _FromEncoding
&&__from_encoding, _ToEncoding &&__to_encoding,
decode_result<_ResultInput, _Intermediate, _FromState>
&&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state,
_FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __decode_error_handler, and
__encode_error_handler and launders the ztd::text::decode_result through the __decode_error_handler.
The transformed decode result is then transformed to a ztd::text::encode_result before transforming that into the
desired ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __result – [in] The result value that has an error in it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __encode_error_handler – [in] The error handler to mill the
__decode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __from_input_progress – [in] Any unread input characters in any intermediate between
the (failed) encode and decode operations.

• __from_output_progress – [in] Any unread intermediate output characters in any inter-
mediates between the (failed) encode and decode operations.

• __to_input_progress – [in] Any unread intermediate input characters in any intermediate
between the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

412 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_DecodeErrorHandler, typename _EncodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultIntermediate, typename _FromState>
constexpr auto propagate_transcode_decode_error(_Output &&__output, _FromEncoding

&&__from_encoding, _ToEncoding &&__to_encoding,
decode_result<_ResultInput, _ResultIntermediate,
_FromState> &&__decode_result, _DecodeErrorHandler
&&__decode_error_handler, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state,
_FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __decode_error_handler, and
__encode_error_handler and launders the ztd::text::decode_result through the __decode_error_handler.
The transformed decode result is then transformed to a ztd::text::encode_result before transforming that into the
desired ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __result – [in] The result value that has an error in it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __encode_error_handler – [in] The error handler to mill the
__decode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

1.8. API Reference 413

ztd.text, Release 0.0.0

template<typename _Result, typename _ToEncoding, typename _EncodeErrorHandler, typename
_ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename _ResultPivot,
typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_transcode_encode_error(_ToEncoding &&__to_encoding,

decode_result<_ResultInput, _ResultPivot, _FromState>
&&__decode_result, encode_result<_ResultIntermediate,
_ResultOutput, _ToState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Transcoding helper. Takes the given __to_encoding and __encode_error_handler and launders the failed
ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the desired
ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __result – [in] The result value that has an error on it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _ToEncoding, typename _EncodeErrorHandler, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultPivot, typename _FromState, typename
_ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_transcode_encode_error(_ToEncoding &&__to_encoding,

decode_result<_ResultInput, _ResultPivot, _FromState>
&&__decode_result, encode_result<_ResultIntermediate,
_ResultOutput, _ToState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress) noexcept

Takes the given __to_encoding and __encode_error_handler and launders the failed

414 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the
desired ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side. Unlike it’s counterpart, this function does not take an _Result template
parameter and instead deduces the returned transcode result type from inputs.

Parameters

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __decode_result – [in] The decode result value that has an error on it.

• __encode_result – [in] The encode result value that represents what the next step would
be if the decode did not work.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _Result, typename _Input, typename _Output, typename _FromEncoding, typename
_ToEncoding, typename _DecodeErrorHandler, typename _EncodeErrorHandler, typename _ToState,
typename _FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _Intermediate, typename _FromState>
constexpr auto propagate_transcode_decode_error_with(_Input &&__input, _Output &&__output,

_FromEncoding &&__from_encoding,
_ToEncoding &&__to_encoding,
decode_result<_ResultInput, _Intermediate,
_FromState> &&__decode_result,
_DecodeErrorHandler
&&__decode_error_handler, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state,
_FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress)
noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __decode_error_handler, and
__encode_error_handler and launders the ztd::text::decode_result through the __decode_error_handler.
The transformed decode result is then transformed to a ztd::text::encode_result before transforming that into the
desired ztd::text::transcode_result type.

1.8. API Reference 415

ztd.text, Release 0.0.0

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __decode_result – [in] The decode result value that has an error on it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __encode_error_handler – [in] The error handler to mill the
__decode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_DecodeErrorHandler, typename _EncodeErrorHandler, typename _ToState, typename
_FromInputProgress, typename _FromOutputProgress, typename _ToInputProgress, typename
_ToOutputProgress, typename _ResultInput, typename _ResultIntermediate, typename _FromState>
constexpr auto propagate_transcode_decode_error_with(_Input &&__input, _Output &&__output,

_FromEncoding &&__from_encoding,
_ToEncoding &&__to_encoding,
decode_result<_ResultInput, _ResultIntermediate,
_FromState> &&__decode_result,
_DecodeErrorHandler
&&__decode_error_handler, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state,
_FromInputProgress &&__from_input_progress,
_FromOutputProgress &&__from_output_progress,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress)
noexcept

Transcoding helper. Takes the given __from_encoding, __to_encoding, __decode_error_handler, and
__encode_error_handler and launders the ztd::text::decode_result through the __decode_error_handler.

416 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

The transformed decode result is then transformed to a ztd::text::encode_result before transforming that into the
desired ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __from_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __decode_result – [in] The decode result value that has an error on it.

• __decode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __encode_error_handler – [in] The error handler to mill the
__decode_error_handler’s invoked result and other relevant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _Result, typename _Input, typename _ToEncoding, typename _EncodeErrorHandler,
typename _ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename
_ResultPivot, typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename
_ToState>
constexpr auto propagate_transcode_encode_error_with(_Input &&__input, _ToEncoding

&&__to_encoding, decode_result<_ResultInput,
_ResultPivot, _FromState> &&__decode_result,
encode_result<_ResultIntermediate, _ResultOutput,
_ToState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress)
noexcept

Transcoding helper. Takes the given __to_encoding and __encode_error_handler and launders the failed
ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the desired
ztd::text::transcode_result type.

1.8. API Reference 417

ztd.text, Release 0.0.0

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making
sure the error manifests on the other side.

Template Parameters
_Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __decode_result – [in] The decode result value that has an error on it.

• __encode_result – [in] The encode result value that represents .

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _Input, typename _ToEncoding, typename _EncodeErrorHandler, typename
_ToInputProgress, typename _ToOutputProgress, typename _ResultInput, typename _ResultPivot,
typename _FromState, typename _ResultIntermediate, typename _ResultOutput, typename _ToState>
constexpr auto propagate_transcode_encode_error_with(_Input &&__input, _ToEncoding

&&__to_encoding, decode_result<_ResultInput,
_ResultPivot, _FromState> &&__decode_result,
encode_result<_ResultIntermediate, _ResultOutput,
_ToState> &&__encode_result,
_EncodeErrorHandler &&__encode_error_handler,
_ToInputProgress &&__to_input_progress,
_ToOutputProgress &&__to_output_progress)
noexcept

Takes the given __to_encoding and __encode_error_handler and launders the failed
ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the
desired ztd::text::transcode_result type.

Remark

This function is a helper whose sole purpose is to ensure that the other half of error handling is called by transcode-
style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode). This function
attempts to take care of any unread/unwritten characters and other minor points in its pursuit of properly making

418 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

sure the error manifests on the other side. Unlike it’s counterpart, this function does not take an _Result template
parameter and instead deduces the returned transcode result type from inputs.

Parameters

• __output – [in] The input view to be reading from.

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __decode_result – [in] The decode result value that has an error on it.

• __encode_result – [in] The encode result value that represents .

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

1.9 Progress & Future Work

This is where the status and progress of the library will be kept up to date. You can also check the Issue Tracker for
specific issues and things being worked on! We also maintain a very large list of encodings, so you can check if a
specific encoding you are looking for is supported (and if you will need to implement an Encoding Object for it).

1.9.1 Copyable State

Right now, all state parameters are assumed to be move-only. This is detrimental to creating cheap views like .
code_points() on basic_text_view, and harms other types as well. Work should be done either to make copyable
state, or allow passing state in more effectively (we currently do the passing technique at the moment).

• Do all states need to be copyable? Can it be done selectively? (At the moment: basic_text_view and
text_view very well may need it, and as more Shift-State encodings become a part of the library, even more
need. . .)

1.9.2 Transcoding Iterators/Transcode View

Right now these types would not work especially well for input and output ranges. They should be modified
just like the internal ztd::text::__txt_detail::__encoding_iterator class types, so that they work with
input_iterator and output_iterator types.

• Improve constructor delegation and make sure to explicitly implement default construction vs. letting it happen
with =default (which does not work for some of the base types present).

• Modify implementation to cache data and position when an input or output iterator is detected.

• Return const value_type& for reference to enable C++20 ranges to work properly.

• Mark as enable_borrowed_range when C++20 is detected.

1.9. Progress & Future Work 419

https://github.com/soasis/text/issues

ztd.text, Release 0.0.0

1.9.3 Normalization

ztd::text::nfkd/nfk/nfc/nfkc/fcc are all skeletons right now that need to be filled out for the purposes of giving
this library normalization views.

• nfkc

• nfc

• nfkd

• nfd

• Hook up to basic_text_view and basic_text when finished

1.9.4 basic_text_view

ztd::text::basic_text_view<Encoding, NormalizationForm, Range, ...> is to be the premiere view for
looking at text and preserving both the normalization and encoding form during insertion and erasure. It is not fully
implemented yet, even though basic skeletons exist for it in the code base.

• Grapheme Cluster Iterators

• Code Point iterators

• Grapheme Cluster Iterators

• Comparison operators (If the normalization form is the same and is_bitwise_transcoding_compatible, then
memcmp. If just normalization form and encoding is same, memcmp. Otherwise, code point by code point com-
parison.)

1.9.5 basic_text

ztd::text::basic_text<Encoding, NormalizationForm, Storage, ...> is to be the premiere container for
storing text and preserving both the normalization and encoding form during insertion and erasure. It is not fully
implemented yet, even though basic skeletons exist for it in the code base.

• Code Point iterators/ranges

• Grapheme Cluster Iterators

• Comparison operators (If the normalization form is the same and is_bitwise_transcoding_compatible, then
memcmp. If just normalization form and encoding is same, memcmp. Otherwise, code point by code point com-
parison.)

• Insertion (Fast normalization-preserving splicing/inserting algorithm)

• Deletion

• Converting Constructors between compatible types (errors the same way lossy conversion protection describes
if they are not compatible, forcing a user to pass in an error handler.)

420 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10 Benchmarks

Below is a all of the benchmarks currently conducted and built-in to the code of this repository for the purposes of
testing and improving the implementation. For further detail, read the article here.

The specification for these benchmarks is as follows:

• The latest of each library was used as of 05 January, 2024.

• Windows 10 Pro machine, general user processes running in the background (but machine not being used).

• AMD Ryzen 9 5950X @ 3400 MHz (16 Core Processor), 32.0 GB Physical Memory

• Clang 15.0.3, latest available Clang at the time of generation with MSVC ABI.

• Entire software stack for every dependency build under default CMake flags (including ICU and libiconv from
vcpkg).

• Anywhere from 150 to 10million samples per iteration, with mean (average) of 100 iterations forming transparent
dots on graph.

• Each bar graph is mean of the 150 iterations, with provided standard deviation-based error bars.

• For the sake of keeping an almost identical set of bars in each graph, sometimes a library is explicitly shown as
“unsupported”. “Unsupported” is different from doing a conversion but then failing, or doing a conversion and
producing the wrong output.

• If an error occurs during the benchmark, its graph will instead feature a short text blurb explaining what went
wrong. The benchmarking code can be read to understand further what happened.

• In general, unless explicitly noted, the fastest possible API under the constraints was used to produce the
data.

– “Unbounded” means that, where shown, the available space left for writing was not considered.

– “Unchecked” means that, where shown, the input was not validated before being converted.

– “Well-Formed”, in the title, means that the input was well-formed.

– (We do not do error benchmarks (yet).)

The categories of benchmarks are as follows:

1.10.1 Function Form

The following benchmarks test the conversion of the entire set of valid Unicode Scalar Values (all Unicode code points,
except the surrogate values used for UTF-16). The transcoding done is UTF-32 to UTF-8, with as-identical an internal
conversion routine as possible. The only differences in the internal workings of the conversion are in reaction to the
inputs and outputs given.

The goal of these benchmarks is to measure how using a basic, single (indivisible unit of work) conversion run in a loop
can affect speed based on how the function is structured. This is mostly relevant in the case of libraries like musl-libc,
where the maintainers expressly declared they would NOT optimize the bulk-conversion functions to do anything and
would rather write the base conversion loop:

. . .

On musl (where I’m familiar with performance properties), byte-at-a-time conversion is roughly half the
speed of bulk, which looks big but is diminishingly so if you’re actually doing something with the result
(just converting to wchar_t for its own sake is not very useful).

—Rich Felker, December 30th, 2019, musl libc mailing list.

1.10. Benchmarks 421

https://thephd.dev/cuneicode-and-the-future-of-text-in-c
https://musl.libc.org/
https://www.openwall.com/lists/musl/2019/12/30/8

ztd.text, Release 0.0.0

Here, we can see how writing the bulk conversion functions in terms of the single functions are affected by a given API
design.

All Unicode Code Points

C Basic Source Character Set

1.10.2 INTERNAL Transcoding - Unicode Encodings

Warning: The benchmarks in this section are solely for tracking the behavior and runtime of effectively niche
or internal behaviors, such as single conversion from bulk functionality built into ztd.cuneicode’s registry or how
much it costs to run a basic loop.

Please keep this in mind as you browse.

The purpose of these graphs is to see how expensive it is for various styles of encoding. It includes all of the other
benchmarks, but adds a few more for ztd.cuneicode and ztd.text. These labels are the more important ones:

• “single from bulk loop”

• “basic”

These mirror the points documented here; specifically, using a limiting technique to recreate a one-at-a-time, indivis-
ible unit of work from a single loop, or using a technique to process an entire set of input by using the one-by-one
functions. The latter technique is the foundation of both ztd.text and ztd.cuneicode, so it is illuminating to see how
(poorly) the former technique (“single from bulk”) performs against the latter technique (“basic”, the bulk-from-single
functionality). This described :doc:here.

422 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

All Unicode Code Points

The following benchmarks test the conversion of the basic source character set (from C and C++), going from one UTF
encoding to another UTF encoding. It helps test speed under larger conversions.

All Unicode Code Points, With Initialization

The following benchmarks measure the same conversion, but with any initialization object included within the conver-
sion (e.g., for modeling a library that cannot store a registry/conversion descriptor somewhere).

C Basic Source Character Set

The following benchmarks test a much smaller conversion on the basic source character set, checking not only ASCII
but how well the conversion works for a much smaller inputs.

C Basic Source Character Set, With Initialization

The following benchmarks measure the same conversion, but with any initialization object included within the conver-
sion (e.g., for modeling a library that cannot store a registry/conversion descriptor somewhere).

1.10. Benchmarks 423

ztd.text, Release 0.0.0

424 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 425

ztd.text, Release 0.0.0

426 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 427

ztd.text, Release 0.0.0

428 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 429

ztd.text, Release 0.0.0

430 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 431

ztd.text, Release 0.0.0

432 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 433

ztd.text, Release 0.0.0

434 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 435

ztd.text, Release 0.0.0

436 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 437

ztd.text, Release 0.0.0

438 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 439

ztd.text, Release 0.0.0

1.10.3 Transcoding - Unicode Encodings

Conversion speed is one of the biggest points of a transcoding API. The benchmarks here are meant to test how fast a
conversion could potentially be, taking into account any affordances the API can give for speed (such as not checking
the output write, not validating for input, or doing an indivisible unit of conversion in a loop/a range conversion/etc.).
All the input text right now is completely valid and well-formed input; some of the benchmarks will take advantage of
this to assume the input is valid. Such benchmarks are presented as separate graphs, and only for the APIs that allow
it.

All Unicode Code Points

The following benchmarks test the conversion of the basic source character set (from C and C++), going from one UTF
encoding to another UTF encoding. It helps test speed under larger conversions.

All Unicode Code Points, With Initialization

The following benchmarks measure the same conversion, but with any initialization object included within the conver-
sion (e.g., for modeling a library that cannot store a registry/conversion descriptor somewhere).

440 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 441

ztd.text, Release 0.0.0

442 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 443

ztd.text, Release 0.0.0

444 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 445

ztd.text, Release 0.0.0

446 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.10. Benchmarks 447

ztd.text, Release 0.0.0

C Basic Source Character Set

The following benchmarks test a much smaller conversion on the basic source character set, checking not only ASCII
but how well the conversion works for a much smaller inputs.

C Basic Source Character Set, With Initialization

The following benchmarks measure the same conversion, but with any initialization object included within the conver-
sion (e.g., for modeling a library that cannot store a registry/conversion descriptor somewhere).

1.11 Licenses, Thanks and Attribution

ztd.text is dual-licensed under either the Apache 2 License, or a corporate license if you bought it with special support.
See the LICENSE file or your copy of the corporate license agreement for more details!

1.11.1 Third-party Dependencies and Code

All third-party code is listed in the NOTICE file. It is also reproduced here. In particular:

• Martin Moene; span-lite (Boost 1.0 License) - Code included directly and made available if a C++20 is
not present.

We thank Martin Moene for their hard work.

448 Chapter 1. Who Is This Library For?

https://github.com/martinmoene/span-lite

ztd.text, Release 0.0.0

1.11. Licenses, Thanks and Attribution 449

ztd.text, Release 0.0.0

450 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.11. Licenses, Thanks and Attribution 451

ztd.text, Release 0.0.0

452 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.11. Licenses, Thanks and Attribution 453

ztd.text, Release 0.0.0

454 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.11. Licenses, Thanks and Attribution 455

ztd.text, Release 0.0.0

456 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.11.2 Previous and Related Works

Previous attempts at text and text handling libraries were made by various authors. We note them here:

• Tom Honermann; text_view.

• Zach Laine; Boost.Text.

• Henri Sivonen; encoding_rs.

• rmf; libogonek.

Their work was groundbreaking when it first came about and employed similar concepts found in this library. We thank
them for their efforts in moving Text Encoding, Unicode, and Systems Programming forward.

1.11.3 Helping Hands

Whether it’s just a little bit of time, a point towards the right direction, or some ideas, this library builds upon a lot of
collective knowledge and effort. Here we list some of the filks who have spent some time doing this best to make sure
we have the greatest text library on the planet for C++:

• CopperSpice; Talking over many of their design struggles with trying to make better text in CopperSpice/Qt
(https://www.youtube.com/watch?v=w_kD-qAkoH0)

• Luna & Lambda Kitten: Kick-starting better support for Clang / Apple (https://twitter.com/lambdakitten/status/
1418240846638485510)

• Much of rmf and Henri Sivonen’s writings and thoughts on the subjects of Unicode.

• All of Tom Honermann’s previous work on Unicode, Text Processing, and Standardization.

1.11.4 Charitable Contributions

ztd.text has been made possible by charitable contributions from patrons and sponsors around the world:

• Shepherd’s Oasis, LLC (https://soasis.org)

• Jane Lusby

• Orfeas Zafeiris

• Tom Honermann

• Lily Foster

• Camilla Löwy

• Leonardo Lima

• Piotr Piatkowski

• Cynthia Coan

• Johan Andersson

• Erekose Craft

• Christopher Crouzet

• Michael Schellenberger Costa

• Turig Eret

• Brent Beer

1.11. Licenses, Thanks and Attribution 457

https://github.com/tahonermann/text_view
https://github.com/tzlaine/text
https://github.com/hsivonen/encoding_rs
https://github.com/libogonek/ogonek
https://www.youtube.com/watch?v=w_kD-qAkoH0
https://github.com/lunasorcery
https://github.com/emilazy
https://twitter.com/lambdakitten/status/1418240846638485510
https://twitter.com/lambdakitten/status/1418240846638485510
https://hsivonen.fi/
https://github.com/tahonermann
https://soasis.org

ztd.text, Release 0.0.0

• Matt Godbolt

• Erica Brescia

• Carol Chen

• Jeremy Jung

• Max Stoiber

• Evan Lock

• Anil Kumar

• Vincent Weevers

• Ólafur Waage

• Jeff Trull

• Davide Faconti

• Anthony Nandaa

• Christ Drozdowski

• Douglas Creager

• superfunc

• Michael Caisse

• Joshua Fisher

• Billy O’Neal

• Sy Brand

• Eric Tremblay

• Michał Dominiak

• Zach Toogood

• beluga

• Alex Gilding

• Kirk Shoop

• Alex Hadd

• Jimmy “junoravin”

• Joel Falcou

• Pascal Menuet

• Elias Daler

• Randomnetcat

• Robert Maynard

• Martin Hořeňovský

• Hana Dusíková

• 7 more private sponsors

• And many, many more!

458 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(If you are new to being a patron, sponsor, or donator and you don’t see your name here, I may have bungled the export
list, so please e-mail opensource@soasis.org!)

1.12 Bibliography

These are all the resources that this documentation links to, in alphabetical order.

cuneicode
JeanHeyd Meneide & Shepherd’s Oasis, LLC. cuneicode. September 2022. URL: https://savannah.gnu.org/git/
?group=libiconv. A software library for working with and converting text. Typically ships on most, if not all,
POSIX and Linux systems.

encoding_rs
Henri Sivonen. “encoding_rs”. February 2021. URL: https://github.com/libogonek/ogonek. A Rust library for
performing encoding and decoding tasks. Takes a byte-based approach to handling encodings and decodings.
The developer of this library worked on text for a very long time on Mozilla Firefox, and has great insight into
the field of text on their blog, https://hsivonen.fi.

Fast UTF-8
Bob Steagall. “Fast Conversion from UTF-8 with C++, DFAs, and SSE Intrinsics”. September 26th, 2019.
URL: https://www.youtube.com/watch?v=5FQ87-Ecb-A. This presentation demonstrates one of the ways an
underlying fast decoder for UTF-8 can be written, rather than just letting the default work. This work can be
hooked into the conversion function extension points location.

Fast UTF-8 Validation
Daniel Lemire. “Ridiculously fast unicode (UTF-8) validation”. October 20th, 2020. URL: https://lemire.me/
blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/. This blog post is one of many that presents a faster,
more optimized way to validate that UTF-8 is in its correctly form.

glibc-25744
Tom Honermann and Carlos O’Donnell. mbrtowc with Big5-HKSCS returns 2 instead of 1 when consuming
the second byte of certain double byte characters. https://sourceware.org/bugzilla/show_bug.cgi?id=25744. This
bug report details the problem with the C standard library’s ability to handle multiwide characters. This problem
is also present in the “1:N” and “N:1” rules in the C++ standard library.

iconv
Bruno Haible and Daiki Ueno. libiconv. August 2020. URL: https://savannah.gnu.org/git/?group=libiconv. A
software library for working with and converting text. Typically ships on most, if not all, POSIX and Linux
systems.

ICU
Unicode Consortium. “International Components for Unicode”. April 17th, 2019. URL: https://github.com/
hsivonen/encoding_rs The premiere library for not only performing encoding conversions, but performing other
Unicode-related algorithms on sequences of text.

libogonek

R. Martinho Fernandes. “libogonek: A C++11 Library for Unicode”. September 29th, 2019. URL: http:
//site.icu-project.org/ One of the first influential C++11 libraries to bring the concept of iterators and ranges
to not only encoding, but normalization and others. It’s great design was only limited by how incapable
C++11 as a language was for what its author was trying to do.

n2282
Philip K. Krause. “N2282 - Additional multibyte/wide string conversion functions”. June 2018. URL: http://
www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm. This paper attempted to add a few unicode functions
to the list of things to do without changing anything.

1.12. Bibliography 459

mailto:opensource@soasis.org
https://savannah.gnu.org/git/?group=libiconv
https://savannah.gnu.org/git/?group=libiconv
https://www.gnu.org/software/libiconv/
https://github.com/libogonek/ogonek
https://hsivonen.fi
https://www.youtube.com/watch?v=5FQ87-Ecb-A
https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/
https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/
https://sourceware.org/bugzilla/show_bug.cgi?id=25744
https://savannah.gnu.org/git/?group=libiconv
https://www.gnu.org/software/libiconv/
https://www.gnu.org/software/libiconv/
https://github.com/hsivonen/encoding_rs
https://github.com/hsivonen/encoding_rs
http://site.icu-project.org/
http://site.icu-project.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm

ztd.text, Release 0.0.0

Non-Unicode in C++
Henri Sivonen. “P0244 - Text_view: A C++ concepts and range based character encoding and code point enu-
meration library”. URL: https://hsivonen.fi/non-unicode-in-cpp/. A rebuttal to P0244’s “strong code points”
and “strong code units” opinion. This is talked about in depth in the design documentation for strong vs. weak
code point and code unit types.

p0244
Tom Honermann. “P0244 - Text_view: A C++ concepts and range based character encoding and code point
enumeration library”. URL: https://wg21.link/p0244. A C++ proposal written by Tom Honermann, proposing
some of the first ideas for an extensible text encoding interface and lightweight ranges built on top of that.
Reference implementation: https://github.com/tahonermann/text_view.

p1041

R. Martinho Fernandes. “P1041: Make char16_t/char32_t string literals be UTF-16/32”. February 2019.
URL: https://wg21.link/p1041. This accepted paper enabled C++ to strongly associate all char16_t and
char32_t string literals with UTF-16 and UTF-32. This is not the case for C.

1.13 Troubleshooting / Compilation Errors / Runtime Problems (In
Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

This is a section that contains troubleshooting, typical compilation errors, and FAQs/fixes for common problems. It
is meant to be mostly for linking to answers for repeated existing problems when using the library. It is barren at the
moment, but hopefully will be filled out more as the library’s lifetime increases. If you would like to see something
here, please do not hesitate to file an issue at the repository.

1.13.1 Common Compile/Runtime Errors

• Passing a non-borrowed range (a range which, effectively, cannot be cheaply copied) is considered an error since
it has grace performance impacts. If you know that you are passing a range into the *_into class of func-
tions, please mark that range as a borrowed range using std::ranges::enable_borrowed_range (C++20)
or ztd::ranges::enable_borrowed_range (C++17 and lower) so that ztd.text knows how to handle it.

460 Chapter 1. Who Is This Library For?

https://hsivonen.fi/non-unicode-in-cpp/
https://wg21.link/p0244
https://github.com/tahonermann/text_view
https://wg21.link/p1041
https://github.com/soasis/text
https://en.cppreference.com/w/cpp/ranges/borrowed_range

CHAPTER

TWO

INDICES & SEARCH

2.1 Index

461

ztd.text, Release 0.0.0

462 Chapter 2. Indices & Search

INDEX

Symbols
__execution_mac_os (C++ class), 143
__execution_mac_os::code_point (C++ type), 143
__execution_mac_os::code_unit (C++ type), 143
__execution_mac_os::decode_one (C++ function),

144, 145
__execution_mac_os::decode_state (C++ type),

143
__execution_mac_os::encode_one (C++ function),

144, 145
__execution_mac_os::encode_state (C++ type),

143
__execution_mac_os::is_decode_injective

(C++ type), 143
__execution_mac_os::is_encode_injective

(C++ type), 143
__execution_mac_os::is_unicode_encoding

(C++ type), 143
__execution_mac_os::max_code_points (C++

member), 144
__execution_mac_os::max_code_units (C++ mem-

ber), 145
__unicode_code_point (C++ class), 375
__unicode_code_point::__unicode_code_point

(C++ function), 375
__unicode_code_point::operator char32_t

(C++ function), 376
__unicode_code_point::value (C++ function), 376
__unicode_scalar_value (C++ class), 376
__unicode_scalar_value::__unicode_scalar_value

(C++ function), 377
__unicode_scalar_value::operator char32_t

(C++ function), 377
__unicode_scalar_value::value (C++ function),

377
__wide_execution_cwchar (C++ class), 191
__wide_execution_cwchar::code_point (C++

type), 191
__wide_execution_cwchar::code_unit (C++ type),

191
__wide_execution_cwchar::contains_unicode_encoding

(C++ function), 192

__wide_execution_cwchar::decode_one (C++
function), 193

__wide_execution_cwchar::decode_state (C++
type), 191

__wide_execution_cwchar::encode_one (C++
function), 193

__wide_execution_cwchar::encode_state (C++
type), 191

__wide_execution_cwchar::is_decode_injective
(C++ type), 192

__wide_execution_cwchar::is_encode_injective
(C++ type), 192

__wide_execution_cwchar::is_unicode_encoding
(C++ type), 192

__wide_execution_cwchar::max_code_points
(C++ member), 194

__wide_execution_cwchar::max_code_units
(C++ member), 194

__wide_execution_iso10646 (C++ class), 194
__wide_execution_iso10646::code_point (C++

type), 195
__wide_execution_iso10646::code_unit (C++

type), 195
__wide_execution_iso10646::decode_one (C++

function), 195, 196
__wide_execution_iso10646::decode_state

(C++ type), 195
__wide_execution_iso10646::encode_one (C++

function), 195, 197
__wide_execution_iso10646::encode_state

(C++ type), 195
__wide_execution_iso10646::is_decode_injective

(C++ type), 195
__wide_execution_iso10646::is_encode_injective

(C++ type), 195
__wide_execution_iso10646::is_unicode_encoding

(C++ type), 195
__wide_execution_iso10646::max_code_points

(C++ member), 196
__wide_execution_iso10646::max_code_units

(C++ member), 196
__wide_execution_windows (C++ class), 197

463

ztd.text, Release 0.0.0

__wide_execution_windows::code_point (C++
type), 198

__wide_execution_windows::code_unit (C++
type), 198

__wide_execution_windows::decode_one (C++
function), 198

__wide_execution_windows::decode_state (C++
type), 198

__wide_execution_windows::encode_one (C++
function), 198

__wide_execution_windows::encode_state (C++
type), 198

__wide_execution_windows::is_decode_injective
(C++ type), 198

__wide_execution_windows::is_encode_injective
(C++ type), 198

__wide_execution_windows::is_unicode_encoding
(C++ type), 198

__wide_execution_windows::max_code_points
(C++ member), 199

__wide_execution_windows::max_code_units
(C++ member), 199

A
any_byte_encoding (C++ class), 115
any_byte_encoding::any_byte_encoding (C++

function), 116–118
any_byte_encoding::code_point (C++ type), 116
any_byte_encoding::code_unit (C++ type), 116
any_byte_encoding::contains_unicode_encoding

(C++ function), 118
any_byte_encoding::decode_one (C++ function),

119
any_byte_encoding::decode_state (C++ type), 115
any_byte_encoding::decoded_id (C++ member),

120
any_byte_encoding::encode_one (C++ function),

119
any_byte_encoding::encode_state (C++ type), 115
any_byte_encoding::encoded_id (C++ member),

120
any_byte_encoding::is_decode_injective (C++

type), 116
any_byte_encoding::is_encode_injective (C++

type), 116
any_byte_encoding::max_code_points (C++ mem-

ber), 120
any_byte_encoding::max_code_units (C++ mem-

ber), 120
any_byte_encoding::maybe_replacement_code_points

(C++ function), 118
any_byte_encoding::maybe_replacement_code_units

(C++ function), 118
any_byte_encoding::operator= (C++ function), 118

any_encoding (C++ type), 115
any_encoding_with (C++ class), 120
any_encoding_with::any_decode_state (C++

class), 125
any_encoding_with::any_decode_state::any_decode_state

(C++ function), 125
any_encoding_with::any_decode_state::operator=

(C++ function), 125
any_encoding_with::any_encode_state (C++

class), 125
any_encoding_with::any_encode_state::any_encode_state

(C++ function), 126
any_encoding_with::any_encode_state::operator=

(C++ function), 126
any_encoding_with::any_encoding_with (C++

function), 122, 123
any_encoding_with::code_point (C++ type), 121
any_encoding_with::code_unit (C++ type), 121
any_encoding_with::contains_unicode_encoding

(C++ function), 123
any_encoding_with::decode_one (C++ function),

124
any_encoding_with::decode_state (C++ type), 121
any_encoding_with::decoded_id (C++ member),

125
any_encoding_with::encode_one (C++ function),

124
any_encoding_with::encode_state (C++ type), 121
any_encoding_with::encoded_id (C++ member),

125
any_encoding_with::is_decode_injective (C++

type), 122
any_encoding_with::is_encode_injective (C++

type), 122
any_encoding_with::max_code_points (C++ mem-

ber), 125
any_encoding_with::max_code_units (C++ mem-

ber), 125
any_encoding_with::maybe_replacement_code_points

(C++ function), 123
any_encoding_with::maybe_replacement_code_units

(C++ function), 123
any_encoding_with::operator= (C++ function), 123
ascii (C++ member), 126
ascii_t (C++ type), 126
assume_valid_handler (C++ member), 206
assume_valid_handler_t (C++ class), 206
assume_valid_handler_t::assume_valid (C++

type), 207
assume_valid_handler_t::operator() (C++ func-

tion), 207
atari_st (C++ member), 166
atascii (C++ member), 166

464 Index

ztd.text, Release 0.0.0

B
basic_any_punycode (C++ class), 160
basic_any_punycode::code_point (C++ type), 161
basic_any_punycode::code_unit (C++ type), 161
basic_any_punycode::decode_one (C++ function),

161
basic_any_punycode::encode_one (C++ function),

161
basic_any_punycode::is_decode_injective

(C++ type), 161
basic_any_punycode::is_encode_injective

(C++ type), 161
basic_any_punycode::max_code_points (C++

member), 162
basic_any_punycode::max_code_units (C++ mem-

ber), 162
basic_ascii (C++ class), 126
basic_ascii::code_point (C++ type), 127
basic_ascii::code_unit (C++ type), 127
basic_ascii::decode_one (C++ function), 127
basic_ascii::encode_one (C++ function), 128
basic_ascii::is_decode_injective (C++ type),

127
basic_ascii::is_encode_injective (C++ type),

127
basic_ascii::max_code_points (C++ member), 129
basic_ascii::max_code_units (C++ member), 129
basic_ascii::replacement_code_units (C++

function), 127
basic_ascii::state (C++ type), 127
basic_atari_st (C++ class), 168
basic_atascii (C++ class), 168
basic_big5_hkscs (C++ class), 130
basic_big5_hkscs::code_point (C++ type), 130
basic_big5_hkscs::code_unit (C++ type), 130
basic_big5_hkscs::decode_one (C++ function), 131
basic_big5_hkscs::encode_one (C++ function), 131
basic_big5_hkscs::is_decode_injective (C++

type), 130
basic_big5_hkscs::max_code_points (C++ mem-

ber), 132
basic_big5_hkscs::max_code_units (C++ mem-

ber), 132
basic_big5_hkscs::replacement_code_units

(C++ function), 130
basic_big5_hkscs::state (C++ type), 130
basic_count_as_decoded (C++ function), 215
basic_count_as_transcoded (C++ function), 219
basic_decode_into (C++ function), 229
basic_decode_into_raw (C++ function), 227
basic_encode_into (C++ function), 248
basic_encode_into_raw (C++ function), 246
basic_euc_kr_uhc (C++ class), 140
basic_euc_kr_uhc::code_point (C++ type), 140

basic_euc_kr_uhc::code_unit (C++ type), 140
basic_euc_kr_uhc::decode_one (C++ function), 140
basic_euc_kr_uhc::encode_one (C++ function), 141
basic_euc_kr_uhc::is_decode_injective (C++

type), 140
basic_euc_kr_uhc::max_code_points (C++ mem-

ber), 142
basic_euc_kr_uhc::max_code_units (C++ mem-

ber), 142
basic_euc_kr_uhc::replacement_code_units

(C++ function), 140
basic_euc_kr_uhc::state (C++ type), 140
basic_gb18030 (C++ class), 146
basic_gb18030::code_point (C++ type), 147
basic_gb18030::code_unit (C++ type), 147
basic_gb18030::decode_one (C++ function), 147
basic_gb18030::encode_one (C++ function), 148
basic_gb18030::is_decode_injective (C++ type),

147
basic_gb18030::is_encode_injective (C++ type),

147
basic_gb18030::is_unicode_encoding (C++ type),

147
basic_gb18030::max_code_points (C++ member),

148
basic_gb18030::max_code_units (C++ member),

148
basic_gb18030::replacement_code_points (C++

function), 147
basic_gb18030::replacement_code_units (C++

function), 147
basic_gb18030::state (C++ type), 147
basic_gbk (C++ class), 149
basic_gbk::code_point (C++ type), 149
basic_gbk::code_unit (C++ type), 149
basic_gbk::decode_one (C++ function), 150
basic_gbk::encode_one (C++ function), 150
basic_gbk::is_decode_injective (C++ type), 149
basic_gbk::is_encode_injective (C++ type), 149
basic_gbk::is_unicode_encoding (C++ type), 149
basic_gbk::max_code_points (C++ member), 151
basic_gbk::max_code_units (C++ member), 151
basic_gbk::replacement_code_points (C++ func-

tion), 150
basic_gbk::replacement_code_units (C++ func-

tion), 150
basic_gbk::state (C++ type), 149
basic_ibm_1006_urdu (C++ class), 169
basic_ibm_424_hebrew_bulletin (C++ class), 169
basic_ibm_856_hebrew (C++ class), 169
basic_ibm_866_cyrillic (C++ class), 169
basic_iconv (C++ class), 129
basic_incomplete_handler (C++ class), 208

Index 465

ztd.text, Release 0.0.0

basic_incomplete_handler::base (C++ function),
209

basic_incomplete_handler::basic_incomplete_handler
(C++ function), 209

basic_incomplete_handler::code_points (C++
function), 210

basic_incomplete_handler::code_units (C++
function), 210

basic_incomplete_handler::error_handler
(C++ type), 208

basic_incomplete_handler::operator() (C++
function), 209, 210

basic_iso_8859_1 (C++ class), 170
basic_iso_8859_10 (C++ class), 173
basic_iso_8859_13 (C++ class), 174
basic_iso_8859_14 (C++ class), 174
basic_iso_8859_15 (C++ class), 174
basic_iso_8859_16 (C++ class), 174
basic_iso_8859_1::code_point (C++ type), 170
basic_iso_8859_1::code_unit (C++ type), 170
basic_iso_8859_1::decode_one (C++ function), 171
basic_iso_8859_1::encode_one (C++ function), 171
basic_iso_8859_1::is_decode_injective (C++

type), 170
basic_iso_8859_1::is_encode_injective (C++

type), 171
basic_iso_8859_1::max_code_points (C++ mem-

ber), 172
basic_iso_8859_1::max_code_units (C++ mem-

ber), 172
basic_iso_8859_1::replacement_code_units

(C++ function), 171
basic_iso_8859_1::state (C++ type), 170
basic_iso_8859_1_1985 (C++ class), 169
basic_iso_8859_1_1998 (C++ class), 170
basic_iso_8859_2 (C++ class), 172
basic_iso_8859_3 (C++ class), 172
basic_iso_8859_4 (C++ class), 172
basic_iso_8859_5 (C++ class), 173
basic_iso_8859_6 (C++ class), 173
basic_iso_8859_7 (C++ class), 173
basic_iso_8859_8 (C++ class), 173
basic_kamenicky (C++ class), 174
basic_kazakh_strk1048 (C++ class), 175
basic_koi8_r (C++ class), 175
basic_koi8_u (C++ class), 175
basic_mutf8 (C++ class), 155
basic_mutf8::code_point (C++ type), 156
basic_mutf8::code_unit (C++ type), 156
basic_mutf8::decode_one (C++ function), 157
basic_mutf8::decode_state (C++ type), 155
basic_mutf8::decoded_id (C++ member), 158
basic_mutf8::encode_one (C++ function), 157
basic_mutf8::encode_state (C++ type), 156

basic_mutf8::encoded_id (C++ member), 158
basic_mutf8::is_decode_injective (C++ type),

156
basic_mutf8::is_encode_injective (C++ type),

156
basic_mutf8::is_unicode_encoding (C++ type),

155
basic_mutf8::max_code_points (C++ member), 158
basic_mutf8::max_code_units (C++ member), 158
basic_mutf8::replacement_code_points (C++

function), 156
basic_mutf8::replacement_code_units (C++

function), 156
basic_mutf8::self_synchronizing_code (C++

type), 155
basic_mutf8::skip_input_error (C++ function),

156
basic_petscii (C++ class), 159
basic_petscii_shifted (C++ class), 176
basic_petscii_unshifted (C++ class), 175
basic_punycode (C++ type), 159
basic_punycode_idna (C++ type), 160
basic_recode_into_raw (C++ function), 265
basic_recode_one_into (C++ function), 290
basic_recode_one_into_raw (C++ function), 285
basic_shift_jis (C++ type), 163
basic_shift_jis_x0208 (C++ class), 163
basic_shift_jis_x0208::code_point (C++ type),

164
basic_shift_jis_x0208::code_unit (C++ type),

164
basic_shift_jis_x0208::decode_one (C++ func-

tion), 164
basic_shift_jis_x0208::encode_one (C++ func-

tion), 164
basic_shift_jis_x0208::is_decode_injective

(C++ type), 164
basic_shift_jis_x0208::max_code_points (C++

member), 165
basic_shift_jis_x0208::max_code_units (C++

member), 165
basic_shift_jis_x0208::replacement_code_units

(C++ function), 164
basic_shift_jis_x0208::state (C++ type), 164
basic_tatar_ansi (C++ class), 176
basic_tatar_ascii (C++ class), 176
basic_text (C++ class), 79
basic_text_view (C++ class), 80
basic_text_view::base (C++ function), 82
basic_text_view::code_points (C++ function), 81,

82
basic_text_view::encoding_type (C++ type), 81
basic_text_view::error_handler_type (C++

type), 81

466 Index

ztd.text, Release 0.0.0

basic_text_view::normalization_type (C++
type), 81

basic_text_view::range_type (C++ type), 81
basic_text_view::state_type (C++ type), 81
basic_transcode_into_raw (C++ function), 308
basic_transcode_one_into (C++ function), 333
basic_transcode_one_into_raw (C++ function), 328
basic_utf16 (C++ class), 179
basic_utf16::code_point (C++ type), 180
basic_utf16::code_unit (C++ type), 180
basic_utf16::decode_one (C++ function), 181
basic_utf16::decoded_id (C++ member), 182
basic_utf16::encode_one (C++ function), 181
basic_utf16::encoded_id (C++ member), 182
basic_utf16::is_decode_injective (C++ type),

180
basic_utf16::is_encode_injective (C++ type),

180
basic_utf16::is_unicode_encoding (C++ type),

179
basic_utf16::max_code_points (C++ member), 182
basic_utf16::max_code_units (C++ member), 182
basic_utf16::replacement_code_points (C++

function), 180
basic_utf16::replacement_code_units (C++

function), 180
basic_utf16::self_synchronizing_code (C++

type), 179
basic_utf16::skip_input_error (C++ function),

180, 181
basic_utf16::state (C++ type), 180
basic_utf16_be (C++ type), 132
basic_utf16_le (C++ type), 132
basic_utf16_ne (C++ type), 133
basic_utf32 (C++ class), 183
basic_utf32::code_point (C++ type), 183
basic_utf32::code_unit (C++ type), 183
basic_utf32::decode_one (C++ function), 184
basic_utf32::decoded_id (C++ member), 185
basic_utf32::encode_one (C++ function), 184
basic_utf32::encoded_id (C++ member), 185
basic_utf32::is_decode_injective (C++ type),

183
basic_utf32::is_encode_injective (C++ type),

184
basic_utf32::is_unicode_encoding (C++ type),

183
basic_utf32::max_code_points (C++ member), 185
basic_utf32::max_code_units (C++ member), 185
basic_utf32::self_synchronizing_code (C++

type), 183
basic_utf32::skip_input_error (C++ function),

184
basic_utf32::state (C++ type), 183

basic_utf32_be (C++ type), 133
basic_utf32_le (C++ type), 133
basic_utf32_ne (C++ type), 133
basic_utf8 (C++ class), 186
basic_utf8::code_point (C++ type), 187
basic_utf8::code_unit (C++ type), 187
basic_utf8::decode_one (C++ function), 189
basic_utf8::decode_state (C++ type), 187
basic_utf8::decoded_id (C++ member), 189
basic_utf8::encode_one (C++ function), 188
basic_utf8::encode_state (C++ type), 187
basic_utf8::encoded_id (C++ member), 189
basic_utf8::is_decode_injective (C++ type), 187
basic_utf8::is_encode_injective (C++ type), 187
basic_utf8::is_unicode_encoding (C++ type), 187
basic_utf8::max_code_points (C++ member), 189
basic_utf8::max_code_units (C++ member), 189
basic_utf8::replacement_code_points (C++

function), 188
basic_utf8::replacement_code_units (C++ func-

tion), 188
basic_utf8::self_synchronizing_code (C++

type), 187
basic_utf8::skip_input_error (C++ function), 188
basic_validate_decodable_as (C++ function), 349
basic_validate_encodable_as (C++ function), 352
basic_validate_transcodable_as (C++ function),

355
basic_windows_1251 (C++ class), 177
basic_windows_1252 (C++ class), 177
basic_windows_1253 (C++ class), 177
basic_windows_1254 (C++ class), 177
basic_windows_1255 (C++ class), 178
basic_windows_1256 (C++ class), 178
basic_windows_1257 (C++ class), 178
basic_windows_1258 (C++ class), 178
basic_windows_437_dos_latin_us (C++ class), 176
basic_windows_865_dos_nordic (C++ class), 176
basic_windows_874 (C++ class), 177
basic_wtf8 (C++ class), 203
basic_wtf8::code_point (C++ type), 204
basic_wtf8::code_unit (C++ type), 204
basic_wtf8::decode_one (C++ function), 205
basic_wtf8::decode_state (C++ type), 204
basic_wtf8::decoded_id (C++ member), 206
basic_wtf8::encode_one (C++ function), 205
basic_wtf8::encode_state (C++ type), 204
basic_wtf8::encoded_id (C++ member), 206
basic_wtf8::is_decode_injective (C++ type), 204
basic_wtf8::is_encode_injective (C++ type), 204
basic_wtf8::is_unicode_encoding (C++ type), 203
basic_wtf8::max_code_points (C++ member), 206
basic_wtf8::max_code_units (C++ member), 206

Index 467

ztd.text, Release 0.0.0

basic_wtf8::replacement_code_points (C++
function), 204

basic_wtf8::replacement_code_units (C++ func-
tion), 204

basic_wtf8::self_synchronizing_code (C++
type), 203

basic_wtf8::skip_input_error (C++ function), 204
big5_hkscs (C++ member), 130

C
character, 20
code point, 20
code unit, 20
code_point (C++ class), 358
code_point::type (C++ type), 358
code_point_t (C++ type), 358
code_unit (C++ class), 358
code_unit::type (C++ type), 358
code_unit_t (C++ type), 358
compat_utf8 (C++ member), 186
compat_utf8_t (C++ type), 186
contains_unicode_encoding (C++ function), 366
count_as_decoded (C++ function), 216, 217
count_as_transcoded (C++ function), 220–224
count_result (C++ class), 397
count_result::count (C++ member), 398
count_result::count_result (C++ function), 397
count_result::error_code (C++ member), 398
count_result::error_count (C++ member), 398
count_result::errors_were_handled (C++ func-

tion), 397
count_result::input (C++ member), 398
count_result::state (C++ member), 398
cuneicode, 459

D
decode, 20
decode (C++ function), 234, 235
decode_into (C++ function), 230, 231
decode_into_raw (C++ function), 227–229
decode_iterator (C++ class), 85
decode_iterator::decode_iterator (C++ func-

tion), 87, 88
decode_iterator::difference_type (C++ type), 86
decode_iterator::encoding_type (C++ type), 86
decode_iterator::error_handler_type (C++

type), 86
decode_iterator::iterator (C++ type), 86
decode_iterator::iterator_category (C++ type),

86
decode_iterator::iterator_concept (C++ type),

86
decode_iterator::operator= (C++ function), 89
decode_iterator::pointer (C++ type), 86

decode_iterator::range_type (C++ type), 86
decode_iterator::reference (C++ type), 86
decode_iterator::state_type (C++ type), 86
decode_iterator::value_type (C++ type), 86
decode_one (C++ function), 241–243
decode_one_into (C++ function), 237–239
decode_one_into_raw (C++ function), 236, 237
decode_one_to (C++ function), 239–241
decode_result (C++ class), 379
decode_result::decode_result (C++ function),

379, 380
decode_result::error_code (C++ member), 380
decode_result::error_count (C++ member), 381
decode_result::errors_were_handled (C++ func-

tion), 380
decode_result::input (C++ member), 380
decode_result::output (C++ member), 380
decode_result::state (C++ member), 380
decode_state (C++ class), 358
decode_state::type (C++ type), 359
decode_state_t (C++ type), 359
decode_to (C++ function), 232, 233
decode_view (C++ class), 83
decode_view::begin (C++ function), 85
decode_view::decode_view (C++ function), 84, 85
decode_view::encoding_type (C++ type), 83
decode_view::end (C++ function), 85
decode_view::error_handler_type (C++ type), 83
decode_view::iterator (C++ type), 83
decode_view::operator= (C++ function), 85
decode_view::range_type (C++ type), 83
decode_view::sentinel (C++ type), 83
decode_view::state_type (C++ type), 84
decode_view::value_type (C++ type), 83
default_code_point_encoding (C++ class), 370
default_code_point_encoding_t (C++ type), 370
default_code_unit_encoding (C++ class), 371
default_code_unit_encoding_t (C++ type), 372
default_consteval_code_point_encoding (C++

class), 371
default_consteval_code_point_encoding_t

(C++ type), 371
default_consteval_code_unit_encoding (C++

class), 372
default_consteval_code_unit_encoding_t (C++

type), 372
default_handler (C++ member), 207
default_handler_t (C++ class), 207
default_handler_t::error_handler (C++ type),

208

E
encode, 20
encode (C++ function), 252–254

468 Index

ztd.text, Release 0.0.0

encode_into (C++ function), 249, 250
encode_into_raw (C++ function), 246–248
encode_iterator (C++ class), 91
encode_iterator::difference_type (C++ type), 93
encode_iterator::encode_iterator (C++ func-

tion), 93, 94
encode_iterator::encoding_type (C++ type), 92
encode_iterator::error_handler_type (C++

type), 92
encode_iterator::iterator (C++ type), 92
encode_iterator::iterator_category (C++ type),

92
encode_iterator::iterator_concept (C++ type),

92
encode_iterator::operator= (C++ function), 95
encode_iterator::pointer (C++ type), 93
encode_iterator::range_type (C++ type), 92
encode_iterator::reference (C++ type), 93
encode_iterator::state_type (C++ type), 92
encode_iterator::value_type (C++ type), 92
encode_one (C++ function), 260–262
encode_one_into (C++ function), 256–258
encode_one_into_raw (C++ function), 255, 256
encode_one_to (C++ function), 258–260
encode_result (C++ class), 383
encode_result::encode_result (C++ function), 383
encode_result::error_code (C++ member), 384
encode_result::error_count (C++ member), 384
encode_result::errors_were_handled (C++ func-

tion), 384
encode_result::input (C++ member), 384
encode_result::output (C++ member), 384
encode_result::state (C++ member), 384
encode_state (C++ class), 359
encode_state::type (C++ type), 359
encode_state_t (C++ type), 359
encode_to (C++ function), 250–252
encode_view (C++ class), 89
encode_view::begin (C++ function), 91
encode_view::encode_view (C++ function), 90, 91
encode_view::encoding_type (C++ type), 90
encode_view::end (C++ function), 91
encode_view::error_handler_type (C++ type), 90
encode_view::iterator (C++ type), 90
encode_view::operator= (C++ function), 91
encode_view::range_type (C++ type), 90
encode_view::sentinel (C++ type), 90
encode_view::state_type (C++ type), 90
encoding, 21
encoding_error (C++ enum), 372
encoding_error::incomplete_sequence (C++ enu-

merator), 373
encoding_error::insufficient_output_space

(C++ enumerator), 373

encoding_error::invalid_sequence (C++ enumer-
ator), 373

encoding_error::ok (C++ enumerator), 372
encoding_rs, 459
encoding_scheme (C++ class), 134
encoding_scheme::base (C++ function), 136, 137
encoding_scheme::code_point (C++ type), 134
encoding_scheme::code_unit (C++ type), 134
encoding_scheme::contains_unicode_encoding

(C++ function), 137
encoding_scheme::decode_one (C++ function), 138
encoding_scheme::decode_state (C++ type), 134
encoding_scheme::decoded_id (C++ member), 139
encoding_scheme::encode_one (C++ function), 138
encoding_scheme::encode_state (C++ type), 135
encoding_scheme::encoded_id (C++ member), 139
encoding_scheme::encoding_scheme (C++ func-

tion), 135, 136
encoding_scheme::encoding_type (C++ type), 134
encoding_scheme::is_decode_injective (C++

type), 135
encoding_scheme::is_encode_injective (C++

type), 135
encoding_scheme::max_code_points (C++ mem-

ber), 139
encoding_scheme::max_code_units (C++ member),

139
encoding_scheme::maybe_replacement_code_points

(C++ function), 137
encoding_scheme::maybe_replacement_code_units

(C++ function), 137
encoding_scheme::operator= (C++ function), 136
encoding_scheme::replacement_code_points

(C++ function), 137
encoding_scheme::replacement_code_units

(C++ function), 137
encoding_scheme::skip_input_error (C++ func-

tion), 138
euc_kr_uhc (C++ member), 140
execution (C++ member), 142
execution encoding, 21
execution_t (C++ class), 142

F
Fast UTF-8, 459
Fast UTF-8 Validation, 459

G
gb18030 (C++ member), 146
gbk (C++ member), 149
glibc-25744, 459
grapheme cluster, 21

Index 469

ztd.text, Release 0.0.0

I
ibm_1006_urdu (C++ member), 166
ibm_424_hebrew_bulletin (C++ member), 166
ibm_856_hebrew (C++ member), 166
ibm_866_cyrillic (C++ member), 166
iconv, 459
ICU, 459
indivisible unit of work, 21
injective, 21
is_bitwise_transcoding_compatible (C++ class),

369
is_bitwise_transcoding_compatible_v (C++

member), 369
is_code_points_maybe_replaceable (C++ class),

364
is_code_points_maybe_replaceable_v (C++ mem-

ber), 365
is_code_points_replaceable (C++ class), 364
is_code_points_replaceable_v (C++ member), 364
is_code_units_maybe_replaceable (C++ class),

363
is_code_units_maybe_replaceable_v (C++ mem-

ber), 363
is_code_units_replaceable (C++ class), 363
is_code_units_replaceable_v (C++ member), 363
is_decode_injective (C++ class), 362
is_decode_injective_v (C++ member), 362
is_decode_state_independent_v (C++ member),

361
is_encode_injective (C++ class), 362
is_encode_injective_v (C++ member), 362
is_encode_state_independent_v (C++ member),

361
is_ignorable_error_handler (C++ class), 365
is_ignorable_error_handler_v (C++ member), 365
is_input_error_skippable (C++ class), 369
is_input_error_skippable_v (C++ member), 369
is_self_synchronizing_code (C++ class), 370
is_self_synchronizing_code_v (C++ member), 370
is_state_complete (C++ function), 365
is_state_independent_v (C++ member), 361
is_transcoding_compatible (C++ class), 368
is_transcoding_compatible_v (C++ member), 368
is_unicode_code_point (C++ class), 367
is_unicode_code_point_v (C++ member), 367
is_unicode_encoding (C++ class), 366
is_unicode_encoding_v (C++ member), 366
is_unicode_scalar_value (C++ class), 367
is_unicode_scalar_value_v (C++ member), 367
iso_8859_1 (C++ member), 166
iso_8859_10 (C++ member), 167
iso_8859_13 (C++ member), 167
iso_8859_14 (C++ member), 167
iso_8859_15 (C++ member), 167

iso_8859_16 (C++ member), 167
iso_8859_1_1985 (C++ member), 166
iso_8859_1_1998 (C++ member), 166
iso_8859_2 (C++ member), 166
iso_8859_3 (C++ member), 166
iso_8859_4 (C++ member), 166
iso_8859_5 (C++ member), 166
iso_8859_6 (C++ member), 166
iso_8859_7 (C++ member), 166
iso_8859_8 (C++ member), 167

K
kamenicky (C++ member), 167
kazakh_strk1048 (C++ member), 167
koi8_r (C++ member), 167
koi8_u (C++ member), 167

L
libogonek, 459
literal (C++ member), 152
literal encoding, 21
literal_t (C++ class), 152
literal_t::code_point (C++ type), 152
literal_t::code_unit (C++ type), 152
literal_t::decode_one (C++ function), 153
literal_t::decode_state (C++ type), 152
literal_t::decoded_id (C++ member), 154
literal_t::encode_one (C++ function), 153
literal_t::encode_state (C++ type), 152
literal_t::encoded_id (C++ member), 154
literal_t::is_decode_injective (C++ type), 152
literal_t::is_encode_injective (C++ type), 152
literal_t::is_unicode_encoding (C++ type), 152
literal_t::literal_t (C++ function), 153
literal_t::max_code_points (C++ member), 154
literal_t::max_code_units (C++ member), 154
literal_t::operator= (C++ function), 153

M
make_decode_state (C++ function), 374
make_decode_state_with (C++ function), 374
make_encode_state (C++ function), 374
make_encode_state_with (C++ function), 374
max_code_points_v (C++ member), 359
max_code_units_v (C++ member), 360
max_recode_code_points_v (C++ member), 360
max_transcode_code_units_v (C++ member), 360
mojibake, 21
mutf8 (C++ member), 155
mutf8_t (C++ type), 155

N
n2282, 459

470 Index

ztd.text, Release 0.0.0

nltext (C++ type), 79
nltext_view (C++ type), 82
Non-Unicode in C++, 460
ntext (C++ type), 79
ntext_view (C++ type), 82

P
p0244, 460
p1041, 460
pass_handler (C++ member), 211
pass_handler_t (C++ class), 211
petscii (C++ member), 159
petscii_shift (C++ enum), 158
petscii_shift::shifted (C++ enumerator), 158
petscii_shift::unshifted (C++ enumerator), 158
petscii_shifted (C++ member), 167
petscii_state (C++ class), 158
petscii_unshifted (C++ member), 167
pivot (C++ class), 372
pivotless_transcode_result (C++ class), 386
pivotless_transcode_result::error_code (C++

member), 388
pivotless_transcode_result::error_count

(C++ member), 388
pivotless_transcode_result::errors_were_handled

(C++ function), 388
pivotless_transcode_result::from_state (C++

member), 388
pivotless_transcode_result::input (C++ mem-

ber), 388
pivotless_transcode_result::output (C++ mem-

ber), 388
pivotless_transcode_result::pivotless_transcode_result

(C++ function), 386, 387
pivotless_transcode_result::to_state (C++

member), 388
propagate_recode_decode_error (C++ function),

406, 407
propagate_recode_decode_error_with (C++ func-

tion), 410, 411
propagate_recode_encode_error (C++ function),

404, 405
propagate_recode_encode_error_with (C++ func-

tion), 407, 409
propagate_transcode_decode_error (C++ func-

tion), 411, 412
propagate_transcode_decode_error_with (C++

function), 415, 416
propagate_transcode_encode_error (C++ func-

tion), 413, 414
propagate_transcode_encode_error_with (C++

function), 417, 418
punycode (C++ member), 159
punycode_idna (C++ member), 159

punycode_idna_t (C++ type), 159
punycode_t (C++ type), 159

R
recode (C++ function), 280–284
recode_into (C++ function), 271–275
recode_into_raw (C++ function), 266–270
recode_iterator (C++ class), 98
recode_iterator::difference_type (C++ type),

100
recode_iterator::error_code (C++ function), 103
recode_iterator::from_encoding (C++ function),

102
recode_iterator::from_encoding_type (C++

type), 99
recode_iterator::from_error_handler_type

(C++ type), 99
recode_iterator::from_handler (C++ function),

103
recode_iterator::from_state (C++ function), 102
recode_iterator::from_state_type (C++ type), 99
recode_iterator::iterator_category (C++ type),

99
recode_iterator::iterator_concept (C++ type),

99
recode_iterator::iterator_type (C++ type), 99
recode_iterator::operator* (C++ function), 104
recode_iterator::operator++ (C++ function), 104
recode_iterator::operator= (C++ function), 102
recode_iterator::pivot_error_code (C++ func-

tion), 103
recode_iterator::pointer (C++ type), 100
recode_iterator::range (C++ function), 103
recode_iterator::range_type (C++ type), 99
recode_iterator::recode_iterator (C++ func-

tion), 100, 101
recode_iterator::reference (C++ type), 100
recode_iterator::to_encoding (C++ function), 102
recode_iterator::to_encoding_type (C++ type),

99
recode_iterator::to_error_handler_type (C++

type), 99
recode_iterator::to_handler (C++ function), 103
recode_iterator::to_state (C++ function), 102
recode_iterator::to_state_type (C++ type), 99
recode_iterator::value_type (C++ type), 100
recode_one (C++ function), 301–305
recode_one_into (C++ function), 291–296
recode_one_into_raw (C++ function), 286–290
recode_one_to (C++ function), 296–300
recode_result (C++ class), 393
recode_result::error_code (C++ member), 395
recode_result::error_count (C++ member), 395

Index 471

ztd.text, Release 0.0.0

recode_result::errors_were_handled (C++ func-
tion), 394

recode_result::from_state (C++ member), 394
recode_result::input (C++ member), 395
recode_result::output (C++ member), 395
recode_result::pivot (C++ member), 394
recode_result::pivot_error_code (C++ member),

394
recode_result::pivot_error_count (C++ mem-

ber), 394
recode_result::recode_result (C++ function), 393
recode_result::to_state (C++ member), 394
recode_to (C++ function), 275–280
recode_view (C++ class), 95
recode_view::begin (C++ function), 98
recode_view::end (C++ function), 98
recode_view::from_encoding_type (C++ type), 96
recode_view::from_error_handler_type (C++

type), 96
recode_view::from_state_type (C++ type), 96
recode_view::iterator (C++ type), 96
recode_view::range_type (C++ type), 96
recode_view::recode_view (C++ function), 97
recode_view::sentinel (C++ type), 96
recode_view::to_encoding_type (C++ type), 96
recode_view::to_error_handler_type (C++ type),

96
recode_view::to_state_type (C++ type), 96
replacement_handler (C++ member), 211
replacement_handler_t (C++ class), 212
replacement_handler_t::operator() (C++ func-

tion), 212

S
shift_jis (C++ member), 163
shift_jis_t (C++ type), 163
shift_jis_x0208 (C++ member), 163
skip_handler (C++ member), 213
skip_handler_t (C++ class), 213
skip_handler_t::operator() (C++ function), 213
skip_input_error (C++ function), 402
skip_utf32_input_error (C++ function), 403
skip_utf32_with_surrogates_input_error (C++

function), 403
stateless_count_result (C++ class), 395
stateless_count_result::count (C++ member),

396
stateless_count_result::error_code (C++ mem-

ber), 396
stateless_count_result::error_count (C++

member), 396
stateless_count_result::errors_were_handled

(C++ function), 396

stateless_count_result::input (C++ member),
396

stateless_count_result::stateless_count_result
(C++ function), 395

stateless_decode_result (C++ class), 377
stateless_decode_result::error_code (C++

member), 379
stateless_decode_result::error_count (C++

member), 379
stateless_decode_result::errors_were_handled

(C++ function), 378
stateless_decode_result::input (C++ member),

379
stateless_decode_result::output (C++ member),

379
stateless_decode_result::stateless_decode_result

(C++ function), 377, 378
stateless_encode_result (C++ class), 381
stateless_encode_result::error_code (C++

member), 382
stateless_encode_result::error_count (C++

member), 382
stateless_encode_result::errors_were_handled

(C++ function), 382
stateless_encode_result::input (C++ member),

382
stateless_encode_result::output (C++ member),

382
stateless_encode_result::stateless_encode_result

(C++ function), 381, 382
stateless_recode_result (C++ class), 391
stateless_recode_result::error_code (C++

member), 392
stateless_recode_result::error_count (C++

member), 393
stateless_recode_result::errors_were_handled

(C++ function), 392
stateless_recode_result::input (C++ member),

392
stateless_recode_result::output (C++ member),

392
stateless_recode_result::stateless_recode_result

(C++ function), 391, 392
stateless_transcode_result (C++ class), 384
stateless_transcode_result::error_code (C++

member), 386
stateless_transcode_result::error_count

(C++ member), 386
stateless_transcode_result::errors_were_handled

(C++ function), 386
stateless_transcode_result::input (C++ mem-

ber), 386
stateless_transcode_result::output (C++ mem-

ber), 386

472 Index

ztd.text, Release 0.0.0

stateless_transcode_result::stateless_transcode_result
(C++ function), 385

stateless_validate_result (C++ class), 398
stateless_validate_result::input (C++ mem-

ber), 399
stateless_validate_result::operator bool

(C++ function), 398
stateless_validate_result::stateless_validate_result

(C++ function), 398
stateless_validate_result::valid (C++ mem-

ber), 399

T
tatar_ansi (C++ member), 167
tatar_ascii (C++ member), 167
text (C++ type), 79
text_view (C++ type), 82
throw_handler (C++ member), 214
throw_handler_t (C++ class), 214
throw_handler_t::operator() (C++ function), 214
to_name (C++ function), 373
transcode, 21
transcode (C++ function), 323–327
transcode_into (C++ function), 314–318
transcode_into_raw (C++ function), 309–313
transcode_iterator (C++ class), 108
transcode_iterator::difference_type (C++

type), 110
transcode_iterator::error_code (C++ function),

113
transcode_iterator::from_encoding (C++ func-

tion), 112
transcode_iterator::from_encoding_type (C++

type), 109
transcode_iterator::from_error_handler_type

(C++ type), 109
transcode_iterator::from_handler (C++ func-

tion), 112
transcode_iterator::from_state (C++ function),

112
transcode_iterator::from_state_type (C++

type), 109
transcode_iterator::iterator_category (C++

type), 109
transcode_iterator::iterator_concept (C++

type), 109
transcode_iterator::iterator_type (C++ type),

109
transcode_iterator::operator* (C++ function),

113
transcode_iterator::operator++ (C++ function),

113
transcode_iterator::operator= (C++ function),

112

transcode_iterator::pivot_error_code (C++
function), 113

transcode_iterator::pointer (C++ type), 109
transcode_iterator::range (C++ function), 112,

113
transcode_iterator::range_type (C++ type), 109
transcode_iterator::reference (C++ type), 109
transcode_iterator::to_encoding (C++ function),

112
transcode_iterator::to_encoding_type (C++

type), 109
transcode_iterator::to_error_handler_type

(C++ type), 109
transcode_iterator::to_handler (C++ function),

112
transcode_iterator::to_state (C++ function), 112
transcode_iterator::to_state_type (C++ type),

109
transcode_iterator::transcode_iterator (C++

function), 110, 111
transcode_iterator::value_type (C++ type), 109
transcode_one (C++ function), 344–348
transcode_one_into (C++ function), 334–339
transcode_one_into_raw (C++ function), 329–333
transcode_one_to (C++ function), 339–343
transcode_result (C++ class), 389
transcode_result::error_code (C++ member), 391
transcode_result::error_count (C++ member),

391
transcode_result::errors_were_handled (C++

function), 390
transcode_result::from_state (C++ member), 390
transcode_result::input (C++ member), 390
transcode_result::output (C++ member), 391
transcode_result::pivot (C++ member), 390
transcode_result::pivot_error_code (C++ mem-

ber), 390
transcode_result::pivot_error_count (C++

member), 390
transcode_result::to_state (C++ member), 390
transcode_result::transcode_result (C++ func-

tion), 389
transcode_to (C++ function), 318–323
transcode_view (C++ class), 105
transcode_view::begin (C++ function), 107, 108
transcode_view::end (C++ function), 108
transcode_view::from_encoding_type (C++ type),

106
transcode_view::from_error_handler_type

(C++ type), 106
transcode_view::from_state_type (C++ type), 106
transcode_view::iterator (C++ type), 106
transcode_view::range_type (C++ type), 106
transcode_view::sentinel (C++ type), 106

Index 473

ztd.text, Release 0.0.0

transcode_view::to_encoding_type (C++ type),
106

transcode_view::to_error_handler_type (C++
type), 106

transcode_view::to_state_type (C++ type), 106
transcode_view::transcode_view (C++ function),

106, 107

U
u16text (C++ type), 79
u16text_view (C++ type), 82
u32text (C++ type), 80
u32text_view (C++ type), 82
u8text (C++ type), 79
u8text_view (C++ type), 82
unicode code point, 21
unicode scalar value, 22
unicode_code_point (C++ type), 375
unicode_scalar_value (C++ type), 376
utf16 (C++ member), 179
utf16_be_t (C++ type), 133
utf16_le_t (C++ type), 132
utf16_ne_t (C++ type), 133
utf16_t (C++ type), 179
utf32 (C++ member), 182
utf32_be_t (C++ type), 133
utf32_le_t (C++ type), 133
utf32_ne_t (C++ type), 133
utf32_t (C++ type), 182
utf8 (C++ member), 186
utf8_t (C++ type), 186

V
validate_decodable_as (C++ function), 350, 351
validate_encodable_as (C++ function), 353, 354
validate_pivotless_transcode_result (C++

class), 400
validate_pivotless_transcode_result::from_state

(C++ member), 401
validate_pivotless_transcode_result::input

(C++ member), 401
validate_pivotless_transcode_result::operator

bool (C++ function), 400
validate_pivotless_transcode_result::to_state

(C++ member), 401
validate_pivotless_transcode_result::valid

(C++ member), 401
validate_pivotless_transcode_result::validate_pivotless_transcode_result

(C++ function), 400
validate_result (C++ class), 399
validate_result::input (C++ member), 400
validate_result::operator bool (C++ function),

399
validate_result::state (C++ member), 400

validate_result::valid (C++ member), 400
validate_result::validate_result (C++ func-

tion), 399
validate_transcodable_as (C++ function), 355–357
validate_transcode_result (C++ class), 401
validate_transcode_result::from_state (C++

member), 402
validate_transcode_result::input (C++ mem-

ber), 402
validate_transcode_result::operator bool

(C++ function), 401
validate_transcode_result::pivot (C++ mem-

ber), 402
validate_transcode_result::to_state (C++

member), 402
validate_transcode_result::valid (C++ mem-

ber), 402
validate_transcode_result::validate_transcode_result

(C++ function), 401

W
wide execution encoding, 22
wide literal encoding, 22
wide_execution (C++ member), 190
wide_execution_t (C++ class), 190
wide_literal (C++ member), 200
wide_literal_t (C++ class), 200
wide_literal_t::code_point (C++ type), 200
wide_literal_t::code_unit (C++ type), 200
wide_literal_t::decode_one (C++ function), 201
wide_literal_t::decode_state (C++ type), 200
wide_literal_t::decoded_id (C++ member), 202
wide_literal_t::encode_one (C++ function), 201
wide_literal_t::encode_state (C++ type), 200
wide_literal_t::encoded_id (C++ member), 202
wide_literal_t::is_decode_injective (C++

type), 200
wide_literal_t::is_encode_injective (C++

type), 200
wide_literal_t::is_unicode_encoding (C++

type), 200
wide_literal_t::max_code_points (C++ member),

202
wide_literal_t::max_code_units (C++ member),

202
wide_literal_t::operator= (C++ function), 201
wide_literal_t::wide_literal_t (C++ function),

201
wide_utf16 (C++ member), 179
wide_utf16_t (C++ type), 179
wide_utf32 (C++ member), 182
wide_utf32_t (C++ type), 182
windows_1251 (C++ member), 168
windows_1252 (C++ member), 168

474 Index

ztd.text, Release 0.0.0

windows_1253 (C++ member), 168
windows_1254 (C++ member), 168
windows_1255 (C++ member), 168
windows_1256 (C++ member), 168
windows_1257 (C++ member), 168
windows_1258 (C++ member), 168
windows_437_dos_latin_us (C++ member), 167
windows_865_dos_nordic (C++ member), 168
windows_874 (C++ member), 168
wltext (C++ type), 79
wltext_view (C++ type), 82
wtext (C++ type), 79
wtext_view (C++ type), 82
wtf8 (C++ member), 203
wtf8_t (C++ type), 203

Index 475

	Who Is This Library For?
	Quick ‘n’ Dirty Tutorial
	Setup
	Using CMake
	Transcoding
	Transcode between Unicode Encodings
	Transcode from Execution Encoding to UTF-8
	Transcoding with Output Container Controls
	Transcoding into any Output View/Range
	Transcoding with Errors
	Transcoding with Input, Output and Pivot Controls

	Encoding & Decoding
	Counting
	Validation
	There’s More!

	Users in the Wild
	Glossary of Terms & Definitions
	Design Goals and Philosophy
	First Principles - “Lucky 7” and a Liberation-First Design
	Lucky 7
	Breaking it Down
	Result Types
	Error Handlers

	Liberation Achieved

	Bulk vs. Single Conversions
	Single Conversions
	Bulk Conversions

	Lost Information
	“UTF-8 Everywhere!!”
	Fighting Code Rot

	Error Handling
	Error Handler Anatomy
	First Parameter
	Second Parameter
	Third Parameter
	Fourth Parameter
	Secret Type Definition

	Writing A Handler
	Lossy Operation Protection

	Converting, Counting, and Validating Text
	Encode
	Decode
	Transcode
	Recode
	Validate Encodable
	Validate Decodable
	Validate Decodable
	Count as Decoded
	Count as Encoded
	Count as Transcoded

	Strong vs. Weak Code Units/Points and Legacy Encodings
	The Case for Strength
	The Counterpoint
	Allow Both, Prefer One
	Leaving Room
	In Sum

	Lucky 7 Extension - Beyond the Basics
	State, Completion, Runtime Data, and More
	Extra Data and Completion
	Separate Encode/Decode States
	Encoding-Dependent States

	Skip Input on Error
	Injective: Promoting Safety in Encodings
	Replacement Characters
	Always Has A Replacement
	Maybe Has A Replacement
	The Default

	Marking an encoding as Unicode-Capable
	compile time
	Run-time

	Need for Speed: Extension Points
	Extension points: Arguments
	Extension Points: Forms & Return Types
	text_decode
	text_encode
	text_transcode
	text_transcode_one
	text_validate_encodable_as_one
	text_validate_decodable_as_one
	text_validate_transcodable_as_one
	text_validate_encodable_as
	text_validate_decodable_as
	text_count_as_encoded_one
	text_count_as_decoded_one
	text_count_as_encoded
	text_count_as_decoded

	That’s All of Them

	Available Encodings
	Known Unicode Encodings
	Configuring the Library
	API Reference
	Containers
	🔨 basic_text (In Progress)

	Views
	🔨 basic_text_view (In Progress)
	Base Template
	Aliases

	decode_view
	encode_view
	recode_view & recode_iterator
	transcode_view & transcode_iterator

	Encodings
	any_encoding
	Aliases
	Base Template

	any_encoding_with
	Base Template

	ASCII
	Aliases
	Base Template

	basic_iconv
	Base Template

	Big5 Hong Kong Supplementary Character Set (HKSCS)
	Alias
	Base Templates

	🔨 cuneicode_registry_encoding (In Progress)
	Encoding Scheme
	Aliases
	Base Template

	EUC-KR (Unified Hangul Code)
	Alias
	Base Templates

	Execution
	Aliases
	Internal Types
	MacOS-based

	GB18030
	Alias
	Base Templates

	GBK
	Alias
	Base Templates

	Literal
	Alias
	Base Type

	Modified UTF-8
	Aliases
	Base Template

	PETSCII (Shifted & Unshifted, Combined) / CBM ASCII
	Aliases
	Base Templates

	punycode
	Aliases
	Base Template

	SHIFT-JISX0208
	Aliases
	Base Templates

	Single-byte Encodings / Lookup Encodings
	Known Encodings
	Base Templates

	UTF-16
	Aliases
	Base Template

	UTF-32
	Aliases
	Base Template

	UTF-8
	Aliases
	Base Template

	Wide Execution
	Aliases
	Internal Type
	<cwchar>-based
	MacOS-based / __STDC_ISO106464__-based
	Windows-based

	Wide Literal
	Alias
	Base Type

	WTF-8
	Aliases
	Base Template

	Error Handlers
	assume_valid_handler
	default_handler
	basic_incomplete_handler
	pass_handler
	replacement_handler
	skip_handler
	throw_handler

	Conversion and Counting Functions
	count_as_decoded
	Functions

	count_as_encoded
	Functions

	count_as_transcoded
	Functions

	decode
	Named Groups
	decode(...)
	decode_to(...)
	decode_into_raw(...)

	For Everything
	Bulk Functions
	Single Functions

	encode
	Named Groups
	encode(...)
	encode_to(...)
	encode_into_raw(...)

	For Everything
	Bulk Functions
	Single Functions

	recode
	Named Groups
	recode(...)
	recode_to(...)
	recode_into_raw(...)

	For Everything
	Bulk Functions
	Single Functions

	transcode
	Named Groups
	transcode(...)
	transcode_to(...)
	transcode_into_raw(...)

	For Everything
	Bulk Functions
	Single Functions

	validate_decodable_as
	Functions

	validate_encodable_as
	Functions

	validate_transcodable_as
	Functions

	Properties and Classifications
	code_point
	code_unit
	decode_state
	encode_state
	max_code_points
	max_code_units
	max_recode_code_points
	max_transcode_code_units
	is_state_independent_v
	is_decode_state_independent_v
	is_encode_state_independent_v
	is_decode_injective_v
	is_encode_injective_v
	is_code_units_(maybe_)replaceable
	is_code_points_(maybe_)replaceable
	is_ignorable_error_handler
	is_state_complete
	is_unicode_encoding
	contains_unicode_encoding
	is_unicode_code_point
	is_unicode_scalar_value
	is_(bitwise_)transcoding_compatible
	is_input_error_skippable
	is_self_synchronizing_code
	default_code_point_encoding
	default_code_unit_encoding

	Result Types, Status Codes and Quality Aides
	pivot
	encoding_error
	make_decode_state
	make_encode_state
	unicode_code_point
	Internal Type

	unicode_scalar_value
	Internal Type

	stateless_decode_result
	decode_result
	stateless_encode_result
	encode_result
	stateless_transcode_result
	pivotless_transcode_result
	transcode_result
	stateless_recode_result
	recode_result
	stateless_count_result
	count_result
	stateless_validate_result
	validate_result
	validate_pivotless_transcode_result
	validate_transcode_result
	skip_input_error
	propagate_(transcode|transcode)_error

	Progress & Future Work
	Copyable State
	Transcoding Iterators/Transcode View ✅
	Normalization
	basic_text_view
	basic_text

	Benchmarks
	Function Form
	All Unicode Code Points
	C Basic Source Character Set

	⚠️ INTERNAL ⚠️ Transcoding - Unicode Encodings
	All Unicode Code Points
	All Unicode Code Points, With Initialization

	C Basic Source Character Set
	C Basic Source Character Set, With Initialization

	Transcoding - Unicode Encodings
	All Unicode Code Points
	All Unicode Code Points, With Initialization

	C Basic Source Character Set
	C Basic Source Character Set, With Initialization

	Licenses, Thanks and Attribution
	Third-party Dependencies and Code
	Previous and Related Works
	Helping Hands
	Charitable Contributions

	Bibliography
	🔨 Troubleshooting / Compilation Errors / Runtime Problems (In Progress)
	Common Compile/Runtime Errors

	Indices & Search
	Index

	Index

