
ztd.text
Release 0.0.0

ThePhD & Shepherd's Oasis, LLC

Aug 13, 2021

CONTENTS:

1 Who Is This Library For? 3

2 Indices & Search 201

Index 203

i

ii

ztd.text, Release 0.0.0

The premiere library for handling text in different encoding forms and reducing transcoding bugs in your C++ software.

CONTENTS: 1

ztd.text, Release 0.0.0

2 CONTENTS:

CHAPTER

ONE

WHO IS THIS LIBRARY FOR?

If:

• you want to convert from one Unicode encoding to another Unicode encoding;

• you want a no-overhead way to track and keep data in a specific encoding (Unicode-based or not);

• you want a no-memory-overhead way to archive;

• you want to prevent data in the wrong encoding from infiltrating your application and causing Mojibake;

• you want to work with higher-level primitives (code points, graphames) when iterating text that do not break
your text apart;

• you want safe defaults for working with text;

then ztd.text is for you!

1.1 Getting Started (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

1.2 Quick ‘n’ Dirty Tutorial (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

1.3 Users in the Wild

None have come and told us about their usage, yet!

If you use the library to any success, please do not hesitate to reach out to opensource@soasis.org!

3

https://en.wikipedia.org/wiki/Mojibake
mailto:opensource@soasis.org

ztd.text, Release 0.0.0

1.4 Glossary of Terms & Definitions

Occasionally, we may need to use precise language to describe what we want. This contains a list of definitions that can
be linked to from the documentation to help describe key concepts that are useful for the explication of the concepts
and ideas found in this documentation.

character This word carries with it 2 meanings, thanks to C-style languages and their predecessors. Sometimes, chars,
wchar_ts, char8_ts, and similar are called “narrow character”s, “wide character”s, “UTF-8 characters” and
similar. This is the result of a poor legacy in software and hardware nomenclature. These are not character types,
but rather types that _may_ represent the abstract notion of a character but frequently, and often, do not. After
all, you wouldn’t be here reading this if it did and non-English wasn’t busted in your application, now would you?

The other definition is just an abstract unit of information in human languages and writing. The closest approxi-
mation that Unicode has for the human language/writing character is a Grapheme Cluster.

code point A single unit of decoded information. Most typically associated with unicode code points, but they can be
other things such as unicode scalar values or even a 13-bit value.

Note that a single code point does not imply a “character”, as that is a complex entity in human language and
writing that cannot be mapped easily to a single unit of decoded information.

code unit A single unit of encoded information. This is typically, 8-, 16-, or 32-bit entites arranged in some sequential
fashion that, when read or treated in a certain manner, end up composing higher-level units which make up
readable text. Much of the world’s most useful encodings that encode text use multiple code units in sequence
to give a specific meaning to something, which makes most encodings variable length encodings.

decode Converting from a stream of input, typically code units, to a stream of output, typically code points. The output
is generally in a form that is more widely consummable or easier to process than when it started. Frequently, this
library expects and works with the goal that any decoding process is producing unicode code points or unicode
scalar values from some set of code units.

encode Converting from a stream of input, typically code points, to a stream of output, typically code units. The
output may be less suitable for general interchange or consumption, or is in a specific interchange format for the
interoperation. Frequently, this library expects and works with the goal that any decoding process is producing
unicode code points or unicode scalar values from some set of code units.

encoding A set of functionality that includes an encode process or a decode process (or both). The encode process
takes in a stream of code points and puts out a stream of code units. The decode process takes in a stream of
code units and puts out a stream of code points. In a concrete sense, there are a number of additional operations
an encoding needs: see the Lucky 7 design concept.

execution encoding The locale-based encoding related to “multibyte characters” (C and C++ magic words) processed
during program evaluation/execution. It is directly related to the std::set_locale(LC_CTYPE, ...) calls.
Note that this is different from literal encoding, which is the encoding of string literals. The two may not be (and
many times, are not) the same.

grapheme cluster The closest the Unicode Standard gets to recognizing a human-readable and writable character,
grapheme cluster’s are arbitrarily sized bundles of unicode code points that compose of a single concept that
might match what a “character” is in any given human language.

injective An operation which can map all input information to an output. This is used for this library, particularly, to
determine whether an operation is lossy (loses information) or not. For example, UTF-8 to UTF-32 is an injective
operation because the values in a UTF-8 encoding are preserved in a UTF-32 encoding. UTF-16 to GB18030 is
also an injective operation. But, converting something like Latin-1 to ASCII is a lossy operation, or UTF-8 to
SHIFT-JIS.

literal encoding The encoding of string literals ("") during constant evaluation. This is usually controlled by com-
mand line arguments (MSVC and GCC) or fixed during compilation (Clang as UTF-8, though that may change).
Typically defaults to the system’s “locale” setting.

4 Chapter 1. Who Is This Library For?

https://reviews.llvm.org/D88741#2352203

ztd.text, Release 0.0.0

mojibake (Japanese: Pronunciation: [modibake] “unintelligible sequence of characters”.) From Japanese (moji),
meaning “character” and (bake), meaning change, is an occurence of incorrect unreadable characters displayed
when computer software fails to render text correctly to its associated character encoding.

transcode Converting from one form of encoded information to another form of encoded information. In the context
of this library, it means going from an input in one encoding’s code units to an output of another encoding’s code
units. Typically, this is done by invoking the decode of the original encoding to reach a common interchange
format (such as unicode code points) before taking that intermediate output and piping it through the encode step
of the other encoding. Different transcode operations may not need to go through a common interchange, and
may transcode “directly”, as a way to improve space utilization, time spent, or both.

unicode code point A single unit of decoded information for Unicode. It represents the smallest, non-encoded, and
indivisible piece of information that can be used to talk about higher level algorithms, properties, and more from
the Unicode Standard.

A unicode code point has been reserved to take at most 21 bits of space to identify itself.

A single unicode code point is NOT equivalent to a character, and multiple of them can be put together or taken
apart and still have their sequence form a “character”. For a more holistic, human-like interpretation of code
points or other data, see grapheme clusters.

unicode scalar value A single unit of decoded information for Unicode. It’s definition is identical to that of unicode
code points, with the additional constraint that every unicode scalar value may not be a “Surrogate Value”.
Surrogate values are non-characters used exclusively for the purpose of encoding and decoding specific sequences
of code units, and therefore carry no useful meaning in general interchange. They may appear in text streams in
certain encodings: see Wobbly Transformation Format-8 (WTF-8) for an example.

wide execution encoding The locale-based encoding related to “wide characters” (C and C++ magic words) process-
ing during program evaluation/execution. It is directly related to the std::set_locale(LC_CTYPE, ...)
calls. Note that this is different from the wide literal encoding, which is the encoding of wide string literals. The
two may not be (and many times, are not) the same. Nominally, wide string literals are usually not like this, but
there are a handful of compilers were they use neither UTF-16 or UTF-32 as the wide execution encoding, and
instead use, for example, EUC-TW.

wide literal encoding The encoding of wide string literals (L"") during constant evaluation. This is usually controlled
by command line arguments (GCC) or fixed during compilation (Clang as UTF-32, though that may change).
Typically defaults to the system’s “locale” setting.

1.5 Design Goals and Philosophy

The goal of this library are to

• enable people to write new code that can properly handle encoded information, specifically text;

• offer them effective means to convert that information in various ways;

• impose no run-time overhead compared to writing the code by hand; and

• statically track encodings, where possible, to make lossless or bad conversions a compile time error rather than
a runtime problem;

These four goals inform the design of the library to its deepest levels and helps us go through the following important
tenents:

1.5. Design Goals and Philosophy 5

https://en.wikipedia.org/wiki/Extended_Unix_Code#EUC-TW
https://reviews.llvm.org/D88741#2352203

ztd.text, Release 0.0.0

1.5.1 First Principles - “Lucky 7” and a Liberation-First Design

One of the core premises of this library is that any text in one encoding can be converted to another, without having to
know anything about external encodings. This is how the library achieves infinite extensibility! We start by noting that
almost any encoding conversion can be done so long as there is an intermediary that exists between the source and the
destination. For encoded text, this is the line between code units (code_unit for code) and code points (code_point
for code).

Code units are single elements of a linear sequence of encoded information. That could be a sequence of bytes, a
sequence of 16-bit numbers, and more. A sequence of code units is typically specific to the encoding it has and is
generally impossible to reason about in a general or generic sense.

Code points are single elements of a linear sequence of information that have been decoded. They are far more
accessible because they are generally an agreed upon interchange point that most others can access and reason about.

We leverage that, for text, **Unicode Code Points** are an agreed upon interchange format, giving rise to this general
framework for encoding and decoding text:

The way to tap into this concept is to create an object that models an encoding concept, which is commonly referred to
as the “Lucky 7” concept. The concept leverages a technique that has been used at least since the early days of Bruno
Haibile’s and Daiko Ueno’s iconv library, but formalizes it for interacting between 2 encodings.

We call this concept the Lucky 7.

Lucky 7

Lucky 7 is a conceptual idea a single encoding object is all you need to write to fulfill your end of the encoding bargain.
It is called the Lucky 7 because only 7 things are required from you, as the author of the encoding object, to get started:

• 3 type definitions (code_point, code_unit, state)

• 2 static member variables (max_code_points, max_code_units)

• 2 functions (encode_one, decode_one)

1 #include <cstddef>
2 #include
3

4 struct empty_struct {};
5

6 struct utf_ebcdic {
7 // (1)
8 using code_unit = char;
9 // (2)

10 using code_point = char32_t;
11 // (3)
12 using state = empty_struct;
13

14 // (4)
15 static constexpr inline std::size_t max_code_points = 1;
16 // (5)
17 static constexpr inline std::size_t max_code_units = 6;
18

19 // (6)
20 ue_encode_result encode_one(
21 ztd::span<const code_point> input,
22 ztd::span<code_unit> output,

(continues on next page)

6 Chapter 1. Who Is This Library For?

https://en.wikipedia.org/wiki/Unicode#Code_point_planes_and_blocks

ztd.text, Release 0.0.0

Fig. 1: The generic pathway from one encoding to another for most (all?) text Encodings.

1.5. Design Goals and Philosophy 7

ztd.text, Release 0.0.0

(continued from previous page)

23 state& current,
24 ue_encode_error_handler error_handler
25);
26

27 // (7)
28 ue_decode_result decode_one(
29 ztd::span<const code_unit> input,
30 ztd::span<code_point> output,
31 state& current,
32 ue_decode_error_handler error_handler
33);
34 };

There are some supporting structures here that we will explain one by one, but this is the anatomy of a simple encoding
object that you and others can define to do this job. This anatomy explicitly enables some basic work:

• encoding a single indivisible unit of work from code points to code units

• decoding a single indivisible unit of work from code units to code points

• transcoding a single indivisible unit of work from the source encoding’s code units to the destination encoding’s
code code units, if they share a common code point type.

From these 3 operations above, everything else on this library can be built.

Breaking it Down

The first three typedefs are what let internal and externel machinery know what kind of values you expect out of the
ranges that go into the decode_one and encode_one function calls:

• code_unit - the input for decoding (decode_one) operations and the output for encode operations.

• code_point - the input for encode operations and the output for decoding (decode_one) operations.

char is the code unit type that the ranges work with for incoming and outgoing encoded data. char32_t is the code
point type that the ranges use for incoming and outgoing decoded data. Given those, that gives us the ability to define
the result types we will be working with.

Result Types

Result types are specific structs in the library that mark encode and decode operations. They can be used by composing
with the templated type ztd::text::decode_result and ztd::text::encode_result.

1 #include <ztd/text/encode_result.hpp>
2 #include <ztd/text/decode_result.hpp>
3

4 using ue_decode_result = ztd::text::decode_result<
5 ztd::span<const char>,
6 ztd::span<char32_t>,
7 empty_struct
8 >;
9

10 using ue_encode_result = ztd::text::encode_result<
11 ztd::span<const char32_t>,

(continues on next page)

8 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

12 ztd::span<char>,
13 empty_struct
14 >;

These result structures are returned from the lowest level encode and decode operations. They contain:

• An input member, which is the range that is passed into the decode_one and encode_one functions;

• An output member;

• A state member, which is a reference to the state that was passed in to the decode_one or encode_one
functions;

• An error_code member, which is an enumeration value from ztd::text::encoding_error; and

• An handled_errors member, which is an unsigned integral (std::size_t) value that says whether or not the
given error_handler was invoked and how many times

• An errors_were_handled() member function, which returns a boolean value indicating whether
handled_errors is greater than 0.

These variables can be used to query what exactly happened during the operation (error_code and handled_errors),
inspect any state passed into encodings (not used for an encoding such as utf_ebcdic), and how much input and output
has been read/what is left (by checking the input and output ranges whose .begin() value has been incremented
compared to the input values). Understanding the result types now, we move to the error handler:

Error Handlers

The only other thing we need is the error handler, now. Generally, this is a template argument, but for the sake of
illustration we use a concrete type here:

1 #include <functional>
2

3 using ue_decode_error_handler = std::function<
4 ue_decode_result(
5 const utf_ebcdic&,
6 ue_decode_result,
7 ztd::span<char>
8)
9 >;

10

11 using ue_encode_error_handler = std::function<
12 ue_encode_result(
13 const utf_ebcdic&,
14 ue_encode_result,
15 ztd::span<char32_t>
16)
17 >;

The error handlers use a result-in, result-out design. The parameters given are:

0. The encoding which triggered the error. This allows you to access any information about the encoding object
type or any values stored on the encoding object itself.

1. The result object. This object has the error_code member set to what went wrong (see
ztd::text::encoding_error), and any other changes made to the input or output during the operation.

1.5. Design Goals and Philosophy 9

ztd.text, Release 0.0.0

2. A contiguous range (ztd::span) of code_units or code_points that were already read by the algorithm. This
is useful for when the input range uses input iterators, which sometimes cannot be “rolled back” after something
is read (e.g., consider std::istream_iterator).

It returns the same type as the result object. Within this function, anyone can perform any modifications they like
to the type, before returning it. This is an incredibly useful behavior that comes in handy for defining custom error
handling behaviors, as shown in the Error Handling Design section. For example, this allows us to do things like insert
REPLACEMENT_CHARACTER \uFFFD () into a encoding through the ztd::text::replacement_handler_t or en-
able speedy encoding for pre-validated text using ztd::text::assume_valid_handler. When writing your encode_one
or decode_one function, it is your responsibility to invoke the error handler (or not, depending on the value of
ztd::text::is_ignorable_error_handler).

Liberation Achieved

If you achieve all these things, then we can guarantee that you can implement all of the desired functionality of an
encoding library. This is the core design that underpins this whole library, and how it frees both Library Developers
from needing to manically provide every possible encoding to end-users, and end-users from having to beg library
developers to add support for a particular encoding.

There is more depth one can add to an encoding object, but this is the base, required set of things to know and handle
when it comes to working with ztd.text. You can build quite a complex set of features from this functionality, and we
encourage you to keep reading through more of the design documentation to get an understanding for how this works!

10 Chapter 1. Who Is This Library For?

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://www.youtube.com/watch?v=w4qYf2pvPg4&t=2535

ztd.text, Release 0.0.0

1.5.2 Lost Information

One of the biggest problems facing text processing in programming languages today is the loss of information as its
carried through any given system. In C and C++, this comes in the form of all strings - especially multibyte strings -
being given the same type. For example:

1 void read_name(const char* name) {
2 // (1)
3 }

As the maintainer of code inside of the function read_name, what is the encoding of “name” at (1)? What is its
normalization form? What system did it originate from? The function written in C++ form offers very little benefit
either:

1 void read_name(std::string_view name) {
2 // (1)
3 }

Even here, we’ve only made marginal improvements. We know the string is stored in some heap by the default allocator,
we have the size of the string, but that only tells us how many char units are stored, not how many conceptual, human-
readable characters there are or any other pertinent information. Is this information encoded? Is it UTF-8? Maybe it’s
EBCDIC Code Page 833. Maybe it’s UTF-7-IMAP. You don’t know, and by the time you start inspecting or poking
at the individual char code units, who knows what can happen? To make matters worse, even C++ and its Standard
Library have poor support for encoding/decoding, let alone Unicode in general. These problems have been explained
in quite a lot of detail up to this point, but the pitfalls are many:

. . . Where are potential problems?

All over the place? Let’s see. . .

—R. Martinho Fernandes, last edited April 20th, 2018

Some proponents say that if we just change everything to mean “UTF-8” (const char*, std::string, and more), then we
can just assume UTF-8 throughout the entire application and only accept UTF-8 and that will end all our encoding
problems. Typically, these people read UTF-8 Everywhere and then just go all-in on the philosophy, all the time.

“UTF-8 Everywhere!!”

There are many in the programming space that believe that just switching everything to UTF-8 everywhere will solve
the problem. This is, unfortunately, greatly inadequate as a solution. For those who actually read the entire UTF-8
Everywhere manifesto in its fullness, they will come across this FAQ entry:

Q: Why not just let any programmer use their favorite encoding internally, as long as they knows
how to use it?

A: We have nothing against correct usage of any encoding. However, it becomes a problem when the same
type, such as std::string, means different things in different contexts. While it is ‘ANSI codepage’ for some,
for others, it means ‘this code is broken and does not support non-English text’. In our programs, it means
Unicode-aware UTF-8 string. This diversity is a source of many bugs and much misery. . . .

—FAQ Entry #6

The core problem with the “std::string is always UTF-8” decision (even when they are as big as Google, Apple,
Facebook, or Microsoft and own everything from the data center to the browser you work with) is that they live on a
planet with other people who do not share the same sweeping generalizations about their application environments. Nor
have they invoked the ability to, magically, rewrite everyone’s code or the data that’s been put out by these programs in
the last 50 or 60 years. This results in a gratuitous amount of replacement characters or Mojibake when things do not
encode or decode properly:

1.5. Design Goals and Philosophy 11

https://stackoverflow.com/a/17106065
https://utf8everywhere.org/
https://utf8everywhere.org/#faq.liberal

ztd.text, Release 0.0.0

There is a distinct problem that human beings are so used to computers failing them with encoding that they know how
to recognize the mistranslated text:

We get so good at it that we can even recognize the bad text . There’s a wiki for it too. It used to be
a lot worse. UTF-8 definitely helps a whole lot.

—Elias Daler

So, what do we do from here?

Fighting Code Rot

We need ways to fight bit rot and issues of function invariants – like expected encoding on string objects – from infesting
code. While we can’t rewrite every function declaration or wrap every function declaration, one of the core mechanisms
this library provides is a way of tracking and tagging this kind of invariant information, particularly at compile time.

We know we can’t solve interchange on a global level (e.g., demanding everyone use UTF-8) because, at some point,
there is always going to be some small holdout of legacy data that has not yet been fixed or ported. The start of solving
this is by having views and containers that keep encoding information with them after they are first constructed. This
makes it possible to not “lose” that information as it flows through your program:

1 using utf8_view = ztd::text::decode_view<ztd::text::utf8>;
2

(continues on next page)

12 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

3 void read_name(utf8_view name) {
4 // (1)
5 }

Now, we have an explicit decoding view into a sequence of UTF-8 code units, that produces unicode_code_points
that we can inspect and work with. This is much better, as it uses C++’s strong typing mechanisms to give us a useful
view. This means that not only does the person outside of the read_name function understand that the function expects
some UTF-8 encoded text, but the person inside the function knows that they are working with UTF-8 encoded text.
This solves both ends of the user and maintainer divide.

Of course, sometimes this is not always possible. ABI stability mandates some functions can’t have their signatures
change. Other times, you can’t modify the signature of functions you don’t own. This is still helpful in this case, as you
can, at the nearest available point inside the function or outside of it, apply these transformations:

1 void read_name(const char* untagged_name) {
2 using utf8_view = ztd::text::decode_view<
3 ztd::text::basic_utf8<char>, // use "char" as the code unit type
4 std::string_view // explicitly use this view type
5 >;
6 // constructs a std::string_view and
7 // stores it in the proper place
8 utf8_view name(untagged_name);
9 // use it...

10 }

Because the range and container types are templated on not only encoding, but the underlying storage type, you can wrap
up both parameter and return values. You can also access the underlying std::string_view using .base(), so it
remains easy to interop and work with pre-existing systems using newer, more explicit types. Other ranges become pos-
sible, including, say, the __gnu_cxx::rope <https://gcc.gnu.org/onlinedocs/gcc-10.2.0/libstdc++/api/a08538.html>
class that is part of the GCC Extensions Library. It genuinely doesn’t matter what you pick: we will wrap it up and
present the proper interface to you. This also follows UTF-8 Everywhere’s requirements for what it would want out of
a C++ Library that does text Correctly™:

If you design a library that accepts strings, the simple, standard and lightweight std::string would do just
fine. On the contrary, it would be a mistake to reinvent a new string class and force everyone through
your peculiar interface. Of course, if one needs more than just passing strings around, he should then use
appropriate text processing tools. However, such tools are better to be independent of the storage class
used, in the spirit of the container/algorithm separation in the STL.

—UTF-8 Everywhere, FAQ Entry #19

Rather than create new std::string or std::string_view types, we simply wrap existing storage interfaces and
provide specific views or operations on those things. This alleviates the burden of having to reinvent things that already
work fine for byte-oriented interfaces, and helps programmers control (and prevent) bugs. They also get to communicate
their intent in their APIs if they so desire (“This API takes a std::string_view, but with the expectation that it’s going
to be decoded as utf8”). The wrapped type will always be available by calling .base(), which means a developer can
drop down to the level they think is appropriate when they want it (with the explicit acknowledgement they’re going to
be ruining things).

1.5. Design Goals and Philosophy 13

https://utf8everywhere.org/#faq.ood

ztd.text, Release 0.0.0

1.5.3 Error Handling

Text is notorious for being a constant and consistent malformed source of input. From intermediate services mangling
encodings and producing Mojibake to bungled normalization and bad programs not understanding even the slightest
hint of code beyond ASCII, there is a lot of text data that is strictly bad for any program to consume.

When interfacing with range types such as ztd::text::decode_view, functions like ztd::text::transcode, and individual
.encode_one or .decode_one calls on encoding objects like ztd::text::utf8, you can:

• give an error handler type as a template parameter and as part of the constructor; or,

• pass it in as a normal argument to the function to be used.

They can change the conversion and other operations happen works. Consider, for example, this piece of code which
translates from Korean UTF-8 to ASCII:

1 #include <ztd/text/transcode.hpp>
2

3 #include <iostream>
4

5 int main(int, char*[]) {
6 // (1)
7 std::string my_ascii_string = ztd::text::transcode(
8 // input
9 u8"",

10 // from this encoding
11 ztd::text::utf8 {},
12 // to this encoding
13 ztd::text::ascii {});
14

15 std::cout << my_ascii_string << std::endl;
16

17 return 0;
18 }

Clearly, the Korean characters present in the UTF-8 string just cannot fit in a strict, 7-bit ASCII encoding. What,
then, becomes the printed output from std::cout at // (2)? The answer is two ASCII question marks, ??. The
ztd::text::replacement_handler_t object passed in at // (1) substitutes replacement characters (zero or more) into the
output for any failed operation. There are multiple kinds of error handlers with varying behaviors:

• replacement_handler_t, which inserts a substitution character specified by either the encoding object or some
form using the default replacement character "U+FFFD";

• pass_handler, which simply returns the error result as it and, if there is an error, halts higher-level operations
from proceeding forward;

• default_handler, which is just a name for the replacement_handler_t or throw_handler or some other type
based on compile time configuration of the library;

• throw_handler, for throwing an exception on any failed operation;

• incomplete_handler, for throwing an exception on any failed encode/decode operation; and,

• assume_valid_handler, which triggers no checking for many error conditions and can leads to Undefined Behav-
ior if used on malformed input.

Warning: For the love of what little remains holy, PLEASE don’t use ztd::text::assume_valid_handler
unless you REALLY know you need it. It is a surefire way to open up vulnerabilities in your text processing

14 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

algorithm. Not a single line of code using this type should pass code review if there is even the slightest thought
that this will be used on any input that is not PERFECTLY under the DIRECT, PERSONAL control of the authors,
auditors, and maintainers of the code.

These are all the error handlers that you have at your disposal, but they are just pre-provided types you can instantiate
yourself. Nothing stops you from making your own error handling type! In order to do that, however, you need to
understand what an error handler is composed of, and what it’s got inside of itself.

Error Handler Anatomy

An error handler is just a function (or an object with a function call operator) that takes 3 parameters and returns 1
result:

• takes the encoding that will call it when something goes wrong;

• takes the result object you expect to be working with (specifically, ztd::text::encode_result and
ztd::text::decode_result), which contains the current state of affairs from the encoding operation;

• takes a contiguous range representing any input values that may have been read but will not be used; and,

• returns the same result type with any modifications (or not!) you’d like to make.

They are classes with a function call operator and utilizes a few templates. Here’s the skeleton for one:

1 #include <ztd/text.hpp>
2

3 struct my_error_handler {
4 // Helper definitions
5 template <typename Encoding>
6 using code_point_span
7 = ztd::span<const ztd::text::code_point_t<Encoding>>;
8 template <typename Encoding>
9 using code_unit_span

10 = ztd::span<const ztd::text::code_unit_t<Encoding>>;
11

12 // Function call operator that returns a "deduced" (auto) type
13 // Specifically, this one is called for encode failures
14 template <typename Encoding, typename Input, typename Output,
15 typename State>
16 auto operator()(
17 // First Parameter
18 const Encoding& encoding,
19 // Second Parameter, encode-specific
20 ztd::text::encode_result<Input, Output, State> result,
21 // Third Parameter
22 code_point_span<Encoding> input_progress,
23 // Fourth Parameter
24 code_unit_span<Encoding> output_progress) const noexcept {
25 // ... implementation here!
26 (void)encoding;
27 (void)input_progress;
28 (void)output_progress;
29 return result;
30 }

(continues on next page)

1.5. Design Goals and Philosophy 15

ztd.text, Release 0.0.0

(continued from previous page)

31

32 // Function call operator that returns a "deduced" (auto) type
33 // Specifically, this one is called for decode failures
34 template <typename Encoding, typename Input, typename Output,
35 typename State>
36 auto operator()(
37 // First Parameter
38 const Encoding& encoding,
39 // Second Parameter, decode-specific
40 ztd::text::decode_result<Input, Output, State> result,
41 // Third Parameter
42 code_unit_span<Encoding> input_progress,
43 // Fourth Parameter
44 code_point_span<Encoding> output_progress) const noexcept {
45 // ... implementation here!
46 (void)encoding;
47 (void)input_progress;
48 (void)output_progress;
49 return result;
50 }
51 };
52

53 int main(int, char* argv[]) {
54

55 // convert from execution encoding to utf8 encoding,
56 // using our new handler
57 std::string utf8_string = ztd::text::transcode(
58 std::string_view(argv[0]), ztd::text::execution,
59 ztd::text::basic_utf8<char> {}, my_error_handler {});
60

61 return 0;
62 }

This skeleton, by itself, works. It doesn’t do anything: it just returns the result object as-is. This will result in the
algorithm stopping exactly where the error occurs, and returning back to the user. This is because the result has
an error_code member variable, and that member variable, when it reaches the higher level algorithms, stops all
encoding, decoding, transcoding, counting, validation, and etc. work and exists with the proper information.

First Parameter

The first parameter is simple enough: it is the encoding that is calling this error handler. If you invoke an encode_one
or decode_one (or a higher-level conversion algorithm) on a ztd::text::utf8 object, then you can expect a first parameter
of type ztd::text::utf8 to be passed to the error handler.

Note: If the function call .encode_one or .decode_one is a static function that has no instance, then the encoding
object will create a temporary instance to pass to the function. This happens with most encodings that do not contain
any pertinent information on the encoding object itself, like all the Unicode encodings and the ASCII/locale/string
literal encodings.

This can be handy if you need to access information about the encoding object or encoding type. You can get information
about the encoding by using:

16 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• ztd::text::encode_state_t

• ztd::text::decode_state_t

• ztd::text::code_unit_t<Encoding>

• ztd::text::code_point_t<Encoding>

• ztd::text::code_unit_v<Encoding>

• ztd::text::code_point_v<Encoding>

Second Parameter

The second parameter is the result object. It is of the type ztd::text::decode_result or ztd::text::encode_result. The two
types have identical information inside of them, but have different names so that a function call operator can tell the
difference between the two, if it’s necessary.

This contains all of the state and information that the decode operation/encode operation would return, if left unmodified
by the error handler. If you don’t want to do anything to it, simply pass it through by returning it with return result;
. Otherwise, you have access to the input range, the output range, any .state relevant to the operation, the .
error_code, and the .error_handled value. You can modify any one of theses, or even perform a recovery operation
and change the .error_code to be ztd::text::encoding_error::ok. Literally, anything can be done!

For example, someone can see if there is space left in the result.output parameter, and if so attempt to serialize a
replacement character in place there (this is what ztd::text::replacement_handler_t does).

Third Parameter

The third parameter is a contiguous range of input values that were read. Typically, this is a ztd::span handed to you,
or something that can construct a ztd::span or either code units or code points (whatever the output type has). This
is useful for input_ranges and input_iterators where it is impossible to guarantee a value can be written, as is
the case with istream_iterator and other I/O-style iterators and ranges.

Fourth Parameter

The fourth parameter is a contiguous range of output values that were almost written to the output, but could not
be because the output has no more room left. Typically, this is a ztd::span handed to you, or something that can
construct a ztd::span or either code units or code points (whatever the input type has). This is particularly useful
for output_ranges and output_iterators where there is no way to guarantee all characters will be successfully
written, as is the case with ostream_iterator and other I/O-style iterators and ranges.

The fourth parameter is only ever filled out if the error returned is ztd::text::encoding_error::insufficient_output. It is
very important for when someone does bulk-buffered writes, since multiple writes are not guaranteed to fit within the
given ztd::text::max_code_points_v or ztd::text::max_code_units_v for a specific encoding. (They only represent the
maximum for a single, atomic operation.)

This is useful for grabbing any would-be-written output data, and storing it for later / completing it. For example,
writing to a smaller, contiguous buffer for delivery and looping around that buffer can be faster, but it runs the risk of
partial reads/writes on the boundaries of said smaller, contiguous buffer.

1.5. Design Goals and Philosophy 17

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/iterator/ostream_iterator

ztd.text, Release 0.0.0

Secret Type Definition

There is a type definition you can add to your error handler to signal that it is okay to ignore it’s calls. It goes on the
struct and looks like:

using assume_valid = std::false_type; // or std::true_type

This is allows any encoding which uses ztd::text::is_ignorable_error_handler property on your error handler to know
if it’s okay to ignore the error handler when bad things happen. Having this functionality means you can create a “debug
handler” for text you previously know is valid, but might want to check during a debug or tracing build or something
as it encodes and decodes through the system:

1 struct my_debug_handler {
2

3 // Assume it's valid if the config value
4 // is explicitly turned off
5 using assume_valid = std::integral_constant<
6 bool, (MY_ENCODING_TRACE_IS_TURNED_OFF != 0)
7 >;
8

9 // rest of the implementation...
10 };

Writing A Handler

When put together, it can generally look like this:

1 #include <ztd/text/encode.hpp>
2 #include <ztd/text/encoding.hpp>
3

4 #include <iostream>
5

6 using ascii_encode_result = ztd::text::encode_result<
7 // input range type
8 std::u32string_view,
9 // output range type; figured out from function call

10 ztd::span<char>,
11 // the state type for encode operations
12 ztd::text::encode_state_t<ztd::text::ascii_t>>;
13

14 ascii_encode_result my_printing_handler(const ztd::text::ascii_t& encoding,
15 ascii_encode_result result,
16 ztd::span<const char32_t> unused_read_characters,
17 ztd::span<const char> unused_write_characters) noexcept {
18 (void)encoding;
19 // just printing some information
20 std::cout << "An error occurred.\n"
21 << "\tError code value: "
22 << ztd::text::to_name(result.error_code) << "\n"
23 << "\t# of code unit spaces left: " << result.output.size()
24 << "\n"
25 << "\t# of unused code points: "

(continues on next page)

18 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

26 << unused_read_characters.size() << "\n"
27 << "\n"
28 << "\t# of unused code units: "
29 << unused_write_characters.size() << "\n"
30 << "\tInput units left: " << result.input.size() << "\n";
31 // setting the error to "ok"
32 // tells the algorithm to keep spinning,
33 // even if nothing gets written to the output
34 result.error_code = ztd::text::encoding_error::ok;
35 return result;
36 }
37

38 int main(int, char*[]) {
39 std::string my_ascii_string = ztd::text::encode(
40 // input
41 U"",
42 // to this encoding
43 ztd::text::ascii,
44 // handled with our function
45 &my_printing_handler);
46

47 ZTD_TEXT_ASSERT(my_ascii_string == "");
48

49 return 0;
50 }

The result in my_ascii_string should be an empty string: nothing should have succeeded and therefore the function
will just return an empty string. The print out will look like this:

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: 1

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: 0

If you would like the higher-level called function to return more information to you, use the lower level en-
code_to/encode_into, decode_to/decode_into, transcode_to/transcode_into.

If you need to do more, you can change from concrete types to templates, and work at increasingly higher levels of
genericity in order to have the printing handler do more and more.

1.5. Design Goals and Philosophy 19

ztd.text, Release 0.0.0

Lossy Operation Protection

Occasionally, you will end up in a situation where you want to convert some text from its pristine and ideal Unicode
form to some other form. Maybe for interopation purposes, maybe because some function call can’t properly handle
embedded NULs in the text so you need to use an overlong sequence to encode the 0 value in your text. No matter what
the case is, you need to leave the world of Unicode Code Points, Unicode Scalar Values, and all the guarantees they
provide you. Let’s take an example, going from UTF-8 to 7-bit-clean ASCII:

1 #include <ztd/text/transcode.hpp>
2

3 #include <iostream>
4

5 int main(int, char*[]) {
6 // (1)
7 std::string my_ascii_string = ztd::text::transcode(
8 // input
9 u8"",

10 // from this encoding
11 ztd::text::utf8 {},
12 // to this encoding
13 ztd::text::ascii {});
14

15 std::cout << my_ascii_string << std::endl;
16

17 return 0;
18 }

This will produce a compile time error (with this error number for MSVC as an example):

error C2338: The encode (output) portion of this transcode is a lossy, non-injective operation. This
means you may lose data that you did not intend to lose; specify an ‘out_handler’ error handler param-
eter to transcode[_to](in, in_encoding, out_encoding, in_handler, out_handler, ...
) or transcode_into(in, in_encoding, out, out_encoding, in_handler, out_handler,
...) explicitly in order to bypass this.

The reason this happens is because we can detect, at compile time, that the conversion from Unicode Code Points to
ASCII is a lossy transformation. When this happens, we realize the conversion will be a lossy one: therefore, it makes
sense that the user cannot perform the encoding or decoding operation without being explicit about how they are going
to handle errors because there is such a gigantically enormous possibility that they will mangle incoming text.

Since this library is trying to prevent Mojibake and other encoding problems, you are required to tag any potentially-
lossy encoding with an error handler, to be explicit and acknowledge that you may or may not be ruining someone’s
day:

1 #include <ztd/text/transcode.hpp>
2

3 #include <iostream>
4

5 int main(int, char*[]) {
6 std::string my_ascii_string = ztd::text::transcode(
7 // input
8 u8"",
9 // from this encoding

10 ztd::text::utf8,
11 // to this encoding

(continues on next page)

20 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

12 ztd::text::ascii,
13 // (1) error handler
14 ztd::text::replacement_handler);
15

16 std::cout << my_ascii_string << std::endl; // (2)
17

18 ZTD_TEXT_ASSERT(my_ascii_string == "??");
19

20 return 0;
21 }

Any encoding which does not meet the requirements of either ztd::text::is_encode_injective_v or
ztd::text::is_decode_injective_v (or both, for transcoding which uses both an encode and a decode operation)
will throw an error if you specify no error handlers in the text. This is done through the Injectivity Lucky 7 Extensions
that go beyond the traditional Lucky 7 with 2 std::true_type/std::false_type definitions.

1.5.4 Converting, Counting, and Validating Text

Conversions are one of the more important aspects of dealing with textual data. To support this, ztd.text contains 7 dif-
ferent methods, each with various overloads and inner groupings of functions to aid in encoding, decoding, transcoding,
validating, and counting code points and code units.

As shown in the Lucky 7 Design, everything here is supported by just having either the required one or two encoding
objects with the designated functions, variables and type definitions. The core of the explanation is in this algorithm:

• Is the input value empty? Return the current results, everything is okay . Otherwise,

0. Set up an intermediate buffer of code_points using the max_code_points of the input encoding count
for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
buffer.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

2. Do the encode_one step from the intermediate into the output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

That’s it for the core loop. Failure is determined exclusively by whether or not the error_code returned from the
decode or encode operation’s result object is ztd::text::encoding_error::ok. If it is OK, then the loop continues until
the input is exhausted. Otherwise, it stops. This forms the basis of the library, and will essentially be our version of
“Elements of Programming”, but for working with Text:

1.5. Design Goals and Philosophy 21

ztd.text, Release 0.0.0

The above algorithm can work for all the below operations:

• transcoding: the above loop presented as-is.

• encoding: take an input of code_points, and simply do not do the decoding step.

• decoding: take an input of code_units, and simply do not do the encoding step.

• validating code units: do the transcoding loop into 2 intermediate buffers, and compare the result of the final
intermediate output to the input.

• validating code points: do the transcoding loop, but in the reverse direction for an input of code_points
(encode first, then decode) into 2 intermediate buffers, and compare the result of the final intermediate output
to the input.

• counting code units: perform the “encoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring the actual contents of the buffer each time.

• counting code points: perform the “decoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring actual the contents of the buffer each time.

This covers the full universe of potential operations you may want to perform on encoded text, for the purposes of input
and output. If you implement the base Lucky 7 or implement the extended Lucky 7 for an encoding, you can gain access
to the full ecosystem of encodings within your application.

22 Chapter 1. Who Is This Library For?

https://youtu.be/RnVWON7JmQ0?t=1380

ztd.text, Release 0.0.0

Encode

Encoding is the action of converting from one sequence of decoded information to a sequence of encoded information.
The formula given for Encoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

Fig. 2: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

In particular, we are interested in the operation that helps us go from the decoded input to the encoded output, which
is the bottom half of the diagram. The input in this case is labeled “intermediate”, because that is often what it is. But,
there are many uses for working directly with the encoded data. A lot of the world does not speak directly in 21-bit
Unicode Code Points, but instead speaks in UTF-8. Legacy systems are often found communicating with Code Pages
(e.g., EBCDIC or SHIFT-JIS); until those systems go down or are replaced, it is imperative to send them well-formed
data, whether over a network or across an inter-process communication bridge of any kind.

Thusly, we use the algorithm as below to do the work. Given an input of code_points with an encoding, a tar-
get output, and any necessary additional state, we can generically convert that sequence of code_points into its

1.5. Design Goals and Philosophy 23

ztd.text, Release 0.0.0

encoded form:

• Is the input value empty? Return the current results with the the empty input, output, and state, everything
is okay ! Otherwise,

0. Do the encode_one step from input (using its begin() and end()) into the output code_unit storage
location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_point sequence to
the code_unit sequence.

Check out the API documentation for ztd::text::encode to learn more.

Decode

Decoding is the action of converting from one sequence of encoded information to a sequence of decoded information.
The formula given for Decoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

In particular, we are interested in the operation that helps us go from the encoded input to the decoded output, which
is the top half of the diagram. The output we are interested in is labeled as an “intermediate”, because that is often
what it is. But, there are many uses for working directly with the decoded data. Many Unicode algorithms are specified
to work over unicode code points or unicode scalar values. In order to identify Word Breaks, classify Uppercase vs.
Lowercase, perform Casefolding, Regex over certain properties properly, Normalize text for search + other operations,
and many more things, one needs to be working with code points as the basic unit of operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, a tar-
get output, and any necessary additional state, we can generically bulk convert the input sequence to a form of
code_points in the output:

• Is the input value empty? Return the current results with the the empty input, output, and state, everything
is okay ! Otherwise,

0. Do the decode_one step from input (using its begin() and end()) into the output code_point storage
location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_units to the
code_points. Notably, the encoding’s code_point type will hopefully be some sort of unicode code point type
(see: ztd::text::is_code_point for a more code-based classification). Though, it does not have to be for many different
(and very valid) reasons.

Check out the API documentation for ztd::text::decode to learn more.

24 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Fig. 3: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

1.5. Design Goals and Philosophy 25

ztd.text, Release 0.0.0

Transcode

Transcoding is the action of converting from one sequence of encoded information to another sequence of (usually
differently) encoded information. The formula given for Transcoding is actually exactly the same as the one shown in
the main Lucky 7 documentation, reproduced here:

Fig. 4: The generic pathway from one encoding to another for most text Encodings.

The core tenant here is that as long as there is a common intermediary between the 2 encodings, you can decode from
the given input into that shared common intermediary (e.g., unicode code points or unicode scalar values), then encode
from the common intermediary to the second encoding’s output. This is a pretty basic way of translating data and it’s
not even a particularly new idea (iconv has been doing this for well over a decade now, libogonek got this core idea
rolling in a C++ interface, and in general this is quite literally how all data interchange has been done since forever).
The equalizer here is that, unlike other industries that struggle to define an interchange format, Unicode Code Points
has become the clear and overwhelming interoperation choice for people handling text all over the world.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with a from_encoding, a
to_encodingwith a target output, and any necessary additional states, we can generically convert that one encoding

26 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

to the other so long as those encodings follow the Lucky 7 design:

• Is the input value empty? Return the current results with the the empty input, output, and states, everything
is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding as the maximum size of the storage location, for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

2. Do the encode_one step from the intermediate into the output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for any 2 encoding pairs, and does not require the first encoding from_encoding to
know any details about the second encoding to_encoding! This means a user is only responsible for upholding their
end of the bargain with their encoding object, and can thusly interoperate with every other encoding that speaks in the
same intermediade, decoded values (i.e. unicode code points).

Check out the API documentation for ztd::text::transcode to learn more.

Validate Encodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code points can be turned into code units of the given encoding. The way it does this, however,
is two-fold:

• it first encodes the input code units, to see if it can do the transformation without loss of information; then,

• it decodes the output from the last step, to see if the final output is equivalent to the input.

The algorithm for this is as follows:

• Is the input value empty? Return the current results with the the empty input, valid set to true and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_points, using the
max_code_points of the input encoding, for the next operations.

2. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the decode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_points of the input sequentially against the code_points within the
intermediate_checked_output.

1.5. Design Goals and Philosophy 27

ztd.text, Release 0.0.0

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If
an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the encode_one step and the decode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd::text::validate_encodable_as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

• it first decodes the input code units, to see if it can do the transformation without loss of information; then,

• it encodes the output from the last step, to see if the final output is equivalent to the input.

The algorithm for this is as follows:

• Is the input value empty? Return the current results with the the empty input, valid set to true, and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_units, using the max_code_units
of the input encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_units of the input sequentially against the code_units within the
intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If

28 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd::text::validate_decodable_as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

• it first decodes the input code units, to see if it can do the transformation without loss of information; then,

• it encodes the output from the last step.

The algorithm for this is as follows:

• Is the input value empty? Return the current results with the the empty input, valid set to true, and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_units, using the max_code_units
of the output encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

– If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. Unlike the encode
and decode validation functions, this one does not have anything to compare its output to. By virtue of converting from
the source to the destination, it is transcodable. Whether or not it can be round-tripped in the other direction isn’t
particularly of concern, just that it can do so without error. This is the more general purpose forms of the encode or
decode operations.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd::text::validate_transcodable_as to learn more.

1.5. Design Goals and Philosophy 29

ztd.text, Release 0.0.0

Count as Decoded

Counting code units is the action of finding out how many code points will result from a given sequence of encoded
information. Essentially, we run the decoding algorithm loop, but instead of giving the end user the decoded values,
we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by decode_one; add that difference to the current count.

• Update input‘s begin() value to point to after what was read by the decode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_units. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_decoded to learn more.

Count as Encoded

Counting encodable data is the action of finding out how many code units will result from a given sequence of already
decoded information, AKA a sequence of code points. Essentially, we run the encoding algorithm loop, but instead of
giving the end user the encoded values, we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location, saving the returned intermediate_output from the encode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by encode_one; add that difference to the current count.

30 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_encoded to learn more.

Count as Transcoded

This operation counts how much text will result from a transcode operation. Essentially, we run the encoding algorithm
loop, but instead of giving the end user the re-encoded values, we instead simply provide the count for running that
bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

• Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points (of the input encoding), using the
max_code_points of the input encoding; and, set up an intermediate_output storage location of
code_units (of the output encoding), for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Do the encode_one step from intermdiate (using its begin() and end()) into the
intermediate_output code_unit storage location, saving the returned intermediate_output
from the encode_one call.

– If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

3. Compute the difference between the begin(intermediate_output) from the original step, and the
begin(result.output) returned by encode_one; add that difference to the current count.

• Update input‘s begin() value to point to after what was read by the encode_one step.

• Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error::ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd::text::count_as_transcoded to learn more.

1.5. Design Goals and Philosophy 31

ztd.text, Release 0.0.0

1.5.5 Strong vs. Weak Code Units/Points and Legacy Encodings

Every encoding object must have code_point and code_unit type definitions on it. Typically, this is set to
ztd::text::unicode_code_point. But, if you go through a Prior Work for this library, you will notice Tom Hon-
ermann’s reference implementation for text_view has a concept of even more strictly controlled code_unit and
character_type than this library. From the associated paper:

This library defines a character class template parameterized by character set type used to represent char-
acter values. The purpose of this class template is to make explicit the association of a code point value
and a character set.

. . .

It has also been suggested that char32_t might suffice as the only character type; that decoding of any en-
coded string include implicit transcoding to Unicode code points. The author believes that this suggestion
is not feasible. . .

—Tom Honermann, P0244 text_view

The Case for Strength

This general philosophy in Honermann’s text_view means that you do not just use unsigned char or
unicode_code_point for code unit and code point types, but instead traffic more directly in, for example,
ebcdic_char and ebcdic_code_point types. They are essentially strong type definitions and strong wrappers sim-
pler, “lower level” types like char32_t and char. It has the following tradeoffs:

• XXX Can directly connect a range and its value_type to a specific encoding (e.g.,
default_code_point_encoding_t<ascii_code_point> means ascii, definitively).

• XXX Actively prevents passing one type of range/view to a function expecting another (e.g.,
std::basic_string<ascii_char> cannot accidentally be given to a function expecting std::string,
where the expectation might be for an execution encoded string.)

• XXX Easy to strip out all encoding/codec information and the range types themselves can still recover it
(e.g. ascii_code_point* u32_c_str_ptr can be strongly associated with the ascii encoding, whereas
unicode_code_point* u32_c_str_ptr loses all that information.)

• Requires reinterpret_cast or std::memcpy/std::copy to work with most existing code that do not have
such strongly typed pointers.

• Can generate a lot of template type spam for what are essentially just char.

• Not very good in constexpr, where reinterpret_cast isn’t allowed and there are pre-existing constexpr
functions that are not templated.

The question boils down to: should we have strong code point and code unit types by default in the library?

Henri Sivonen — author of encoding_rs and expert in the text domain — strongly disagrees.

32 Chapter 1. Who Is This Library For?

https://github.com/tahonermann/text_view
https://wg21.link/p0244
https://github.com/hsivonen/encoding_rs

ztd.text, Release 0.0.0

The Counterpoint

In a long piece on P0422, the C and C++ landscape, and Standardization efforts, Henri writes:

I think the C++ standard should adopt the approach of “Unicode-only internally” for new text process-
ing facilities and should not support non-Unicode execution encodings in newly-introduced features. This
allows new features to have less abstraction obfuscation for Unicode usage, avoids digging legacy appli-
cations deeper into non-Unicode commitment, and avoids the specification and implementation effort of
adapting new features to make sense for non-Unicode execution encodings.

—Henri Sivonen, It’s Time to Stop Adding New Features for Non-Unicode Execution Encodings in C++

This is a different set of choices and a different set of priorities from the outset. Sivonen’s work specifically is that
with Browsers and large code bases like Firefox; they are responsible for making very good traction and progress on
encoding issues in a world that is filled primarily with Unicode, but still has millions of documents that are not in
Unicode and, for the foreseeable future, won’t end up as Unicode.

This is a strong argument for simply channeling char16_t, char32_t, and – since C++20 – char8_t as the only
types one would need. Firefox at most deals in UTF-16 (due to the JavaScript engine for legacy reasons) and UTF-
8, internally. At the boundaries, it deals with many more text encodings, because it has to from the world wide web.
Occasionally, UTF-32 will appear in someone’s codebase for interoperation purposes or algorithms that need to operate
on something better than code units.

Unicode is also. . . well, a [UNI]versal [CODE]. Its purposes are interoperation, interchange, and common ground
between all the encodings, and it has been the clear winner for this for quite some time now. Sivonen makes a compelling
point for just considering Unicode — and only Unicode — for all future text endeavors.

Do we really need to focus on having support for legacy encodings? Or at least, do we really need support for legacy
encodings at the level that Tom Honermann’s text_view is trying to achieve?

ztd.text’s answer is simple:

1.5. Design Goals and Philosophy 33

https://hsivonen.fi/non-unicode-in-cpp/
https://encoding.spec.whatwg.org/

ztd.text, Release 0.0.0

Allow Both, Prefer One

ztd.text prefers Henri Sivonen’s approach to the library in general. The code_unit type is generally a weakly-typed
choice of one of the 6 viable code unit types in C++ (char, wchar_t, unsigned char, char8_t, char16_t, and
char32_t). The code_point type is typically just unicode_code_point (an alias for char32_t by default) or
unicode_scalar_value (a strong type by default, because it carries extra pertinent information about itself that
can aid the library). Unfortunately, this means that ztd::text::default_code_point_encoding_t is not a very rich type
mapping (it generally just spits out UTF-8).

This does not mean all future algorithms bear the burden of supporting an infinity of text encodings. But, the work for
encoding and decoding text is isolated and constrained specifically to the encoding objects, view types, and functions
that power this library. Down-stream algorithms — like those found in Zach Laine’s Boost.Text — work only with
range/iterator types whose value_type are either unicode_code_points or unicode_scalar_values.

By having a core, standard ecosystem that works primarily with unicode_code_point and unicode_scalar_value,
we heavily incentivize the use of these two types as the only interchange types. Furthermore, because all of the en-
codings provided by this library use unicode_code_point as their code_point type, we set a strong example for
the rest of the ecosystem who may work with and look at these files. This is even the case for the default byte-based
encoding ztd::text::any_encoding, which strongly incentivizes compatibility with the ecosystem by making it clear that
there is a preferred default mode of communication (which is, ztd::text::unicode_code_point). In effect, we produce
The Unicode™ Vortex™:

34 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

This might be the perfect world for most people, but even so there’s room inside that funneled vortex for more.

1.5. Design Goals and Philosophy 35

ztd.text, Release 0.0.0

Leaving Room

There is room in Sivonen’s world, even with perfectly-consistent and fully-Unicode internals, for Honermann’s dream
of never losing encoding information at even the lowest levels. After all, if someone takes the time to wrap up external
interfaces (Shared Pipes, Network Connections, Terminal Interfaces, char Devices, and more), they should have the
ability to tag these interfaces with either encoding objects or strong, reinterpret_cast-able pointer values.

That’s why encodings can still define their own code_unit and code_point types; even if this library — or the
Standard Library — traffics in strictly unicode_code_points, it doesn’t mean the user should be forced to do that if
they are willing to put in the effort for a more type-safe world.

Being able to know, at compile time, without any objects or markup, that a particular pointer + size pairing is meant
for a specific encoding is a powerful way to maintain invariants and track the flow of data without runtime cost through
a program. It can also make it easy to find places where external, non-Unicode data is making it “too far” into the
system, and try to push a conversion closer to the edges of the program.

While ztd.text will traffic and work with char32_t and consider it a unicode_code_point value under most circum-
stances, users are free to define and extend this classification for their own types and generally create as strict (or loose)
as taxonomy as they desire.

In Sum

The library still overwhelmingly traffics in Unicode, and we believe that by making it the default and producing
an overwhelming body of code that treats it as such as can push people towards that default. Using char32_ts,
unicode_code_points, and unicode_scalar_values as Sivonen advocates should have a very low “activation
energy”. Reaching for the strict world envisioned with Honermann’s text_view and its associated implementation is
still possible, but requires more energy. We do not force the user to put in that energy.

As long as both are possible, users can find satisfaction for both of their use cases. Even if Honermann’s design is more
work, it is still quite useful and can lead to a very robust and statically-verifiable design in even huge, complex software
systems.

1.5.6 Lucky 7 Extension - Beyond the Basics

While the given Lucky 7 represents the simplest possible encoding object one can design, there are several more type
definitions, member functions, and other things an individual can use to create more complex encoding objects. Below,
we are going to review the most pertinent ones that allow for better extensibility of the core design and let you go Even
Further Beyond.

Separate Encode/Decode States

It is no secret that encoding and decoding may carrying with them separate states. While converting from a legacy
encoding to Unicode may require maintenance of a shift state or code unit modifier, the opposite direction may not need
any at all. Therefore, as an optimization, an encoding object can define both an encode_state and a decode_state,
seperate from each other. As an example, here is a (simplified) version of how ztd::text::execution, the encoding for
the Locale-based Runtime Execution Encoding, has two seperate states that need to be initialized in different manners:

1 class runtime_locale {
2 public:
3 struct decode_state {
4 std::mbstate_t c_stdlib_state;
5

(continues on next page)

36 Chapter 1. Who Is This Library For?

https://www.youtube.com/watch?v=tTelnNmRUH0
https://www.youtube.com/watch?v=tTelnNmRUH0

ztd.text, Release 0.0.0

(continued from previous page)

6 decode_state() noexcept : c_stdlib_state() {
7 // properly set for mbrtoc32 state
8 code_point ghost_ouput[2] {};
9 UCHAR_ACCESS mbrtoc32(

10 ghost_ouput, "\0", 1, &c_stdlib_state);
11 }
12 };
13

14 struct encode_state {
15 std::mbstate_t c_stdlib_state;
16

17 encode_state() noexcept : c_stdlib_state() {
18 // properly set for c32rtomb state
19 code_unit ghost_ouput[MB_LEN_MAX] {};
20 UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);
21 }
22 };
23 (void)argc;

This is the proper way to initialize a std::mbstate_t from the C standard library. Then, you can use it! Here’s a
complete implementation using the new encode_state and decode_state types:

1 class runtime_locale {
2 using rtl_decode_result
3 = ztd::text::decode_result<ztd::span<const code_unit>,
4 ztd::span<code_point>, decode_state>;
5 using rtl_encode_result
6 = ztd::text::encode_result<ztd::span<const code_point>,
7 ztd::span<code_unit>, encode_state>;
8 using rtl_decode_error_handler = std::function<rtl_decode_result(
9 const runtime_locale&, rtl_decode_result, ztd::span<const char>,

10 ztd::span<const char32_t>)>;
11 using rtl_encode_error_handler = std::function<rtl_encode_result(
12 const runtime_locale&, rtl_encode_result,
13 ztd::span<const char32_t>, ztd::span<const char>)>;
14

15 using empty_code_unit_span = ztd::span<const code_unit, 0>;
16 using empty_code_point_span = ztd::span<const code_point, 0>;
17

18 public:
19 rtl_decode_result decode_one(
20 ztd::span<const code_unit> input, ztd::span<code_point> output,
21 rtl_decode_error_handler error_handler,
22 decode_state& current // decode-based state
23) const {
24 if (output.size() < 1) {
25 return error_handler(*this,
26 rtl_decode_result(input, output, current,
27 ztd::text::encoding_error::
28 insufficient_output_space),
29 empty_code_unit_span(), empty_code_point_span());
30 }

(continues on next page)

1.5. Design Goals and Philosophy 37

ztd.text, Release 0.0.0

(continued from previous page)

31 std::size_t result = UCHAR_ACCESS mbrtoc32(output.data(),
32 input.data(), input.size(), ¤t.c_stdlib_state);
33 switch (result) {
34 case (std::size_t)0:
35 // '\0' was encountered in the input
36 // current.c_stdlib_state was "cleared"
37 // '\0' character was written to output
38 return rtl_decode_result(
39 input.subspan(1), output.subspan(1), current);
40 break;
41 case (std::size_t)-3:
42 // no input read, pre-stored character
43 // was written out
44 return rtl_decode_result(input, output.subspan(1), current);
45 case (std::size_t)-2:
46 // input was an incomplete sequence
47 return error_handler(*this,
48 rtl_decode_result(input, output, current,
49 ztd::text::encoding_error::incomplete_sequence),
50 empty_code_unit_span(), empty_code_point_span());
51 break;
52 case (std::size_t)-1:
53 // invalid sequence!
54 return error_handler(*this,
55 rtl_decode_result(input, output, current,
56 ztd::text::encoding_error::invalid_sequence),
57 empty_code_unit_span(), empty_code_point_span());
58 }
59 // everything as fine, then
60 return rtl_decode_result(
61 input.subspan(result), output.subspan(1), current);
62 }
63

64 rtl_encode_result encode_one(
65 ztd::span<const code_point> input, ztd::span<code_unit> output,
66 rtl_encode_error_handler error_handler,
67 encode_state& current // encode-based state
68) const {
69 // saved, in case we need to go
70 // around mulitple times to get
71 // an output character
72 ztd::span<const code_point> original_input = input;
73 // The C standard library assumes
74 // it can write out MB_CUR_MAX characters to the buffer:
75 // we have no guarantee our output buffer is that big, so it
76 // needs to go into an intermediate buffer instead
77 code_unit intermediate_buffer[MB_LEN_MAX];
78

79 for (int times_around = 0;; ++times_around) {
80 if (input.size() < 1) {
81 // no more input: everything is fine
82 return rtl_encode_result(input, output, current);

(continues on next page)

38 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

83 }
84 std::size_t result
85 = UCHAR_ACCESS c32rtomb(intermediate_buffer,
86 *input.data(), ¤t.c_stdlib_state);
87 if (result == (std::size_t)-1) {
88 // invalid sequence!
89 return error_handler(*this,
90 rtl_encode_result(original_input, output, current,
91 ztd::text::encoding_error::invalid_sequence),
92 empty_code_point_span(), empty_code_unit_span());
93 }
94 else if (result == (std::size_t)0) {
95 // this means nothing was output
96 // we should probably go-around again,
97 // after modifying input
98 input = input.subspan(1);
99 continue;

100 }
101 // otherwise, we got something written out!
102 if (output.size() < result) {
103 // can't fit!!
104 return error_handler(*this,
105 rtl_encode_result(original_input, output, current,
106 ztd::text::encoding_error::
107 insufficient_output_space),
108 empty_code_point_span(), empty_code_unit_span());
109 }
110 ::std::memcpy(output.data(), intermediate_buffer,
111 sizeof(*intermediate_buffer) * result);
112 input = input.subspan(1);
113 output = output.subspan(result);
114 break;
115 }
116 return rtl_encode_result(input, output, current);
117 }
118 };
119

120 int main(int argc, char* argv[]) {
121 (void)argc;

This allows you to maintain 2 different states, initialized in 2 different ways, one for each of the encode_one and
decode_one paths.

1.5. Design Goals and Philosophy 39

ztd.text, Release 0.0.0

Injective: Promoting Safety in Encodings

As detailed in the Lossy Operation Protection section, is_encode_injective and is_decode_injective help the
library understand when a conversion you are doing cannot be guaranteed at compile time to be lossless. Injectivity is
a high-brow mathematical term:

In mathematics, an injective function (also known as injection, or one-to-one function) is a function that
maps distinct elements of its domain to distinct elements of its codomain.

—Wikipedia, February 2nd, 2021

This is very fancy speak for the fact that for every complete, well-formed input value, there is a well-formed, distinct
output value. It does not have to cover all of the potential output values: so long as there is a one-to-one mapping
that is unambigious for all the input values, it is injective. For practical purposes, it means that all of the code unit
sequences that are valid can produce a unique code point sequence (“the decode operation is injective”). And, in the
reverse case, it means that all the code point sequences that are valid can produce a unique code unit sequence (“the
encode operation is injective”).

These two properties appear on the type itself, and is a way to opt-in to saying that a conversion is not lossy (e.g., it
preserves information perfectly if the input is well-formed). You can define them by placing them on your Encoding
Object Type’s definition:

1 struct any_unicode_byte_encoding {
2 using is_decode_injective = std::true_type;
3 using is_encode_injective = std::true_type;
4 using code_unit = std::byte;
5 using code_point = ztd::text::unicode_scalar_value;
6 // ...
7 };

This signals that the encode_one and decode_one functions — if they are given well-formed input — will never be
lossy between their code_point type and their code_unit types when performing the desired operation. If only one
half of that equation is lossy, then you can mark only one, or the other. For example, ztd::text::ascii is lossy only in
for the encode_one operation, so it has is_decode_injective = std::true_type; for decode operations, but
is_encode_injective = std::false_type; for encode operations:

1 //////
2 /// @brief The individual units that result from an encode operation or are used␣

→˓as input to a decode
3 /// operation.
4 /// @remarks ASCII can decode from its 7-bit (unpacked) code units to Unicode␣

→˓Code Points. Since the converion
5 /// is lossless, this property is true.
6 //////
7 using is_decode_injective = ::std::true_type;
8 //////
9 /// @brief Whether or not the encode operation can process all forms of input␣

→˓into code unit values. This is
10 /// not true for ASCII, as many Unicode Code Point and Unicode Scalar Values␣

→˓cannot be represented in ASCII.
11 /// Since the conversion is lossy, this property is false.
12 //////
13 using is_encode_injective = ::std::false_type;
14 //////
15 /// @brief The maximum code units a single complete operation of encoding can␣

→˓produce.
(continues on next page)

40 Chapter 1. Who Is This Library For?

https://en.wikipedia.org/wiki/Injective_function

ztd.text, Release 0.0.0

(continued from previous page)

16 inline static constexpr const ::std::size_t max_code_units = 1;
17 ::std::move(__inlast)),

If the type definition is not present and is not std::true_type, then the implementation assumes that this is false for
a given encoding. See ztd::text::is_decode_injective and ztd::text::is_encode_injective for more information.

Replacement Characters

Replacement characters are a way to communicate to the end-user that something went wrong, without having to throw
an exception that may stop the world or stop the encoding/decoding process altogether. The default error handler for text
(ztd::text::default_handler, unless configured otherwise) provides room for you to provide your own encoding types,
and it does so in two ways that is recognized by the library:

Always Has A Replacement

If your type always has a replacement character, regardless of the situation, it can signal this by writing one of two
functions:

• replacement_code_units() (for any failed encode step)

• replacement_code_points() (for any failed decode step)

These functions return a contiguous range of either code_units or code_points, typically a std::span<const
code_unit> or a std::span<const code_point>.

1 class runtime_locale {
2 public:
3 ztd::span<const code_unit> replacement_code_units() const noexcept {
4 if (this->contains_unicode_encoding()) {
5 // Probably CESU-8 or UTF-8!
6 static const char replacement[3]
7 = { '\xEF', '\xBF', '\xBD' };
8 return replacement;
9 }

10 else {
11 // Uh... well, it probably has this? ¯_()_/¯
12 static const char replacement[1] = { '?' };
13 return replacement;
14 }
15 }
16

17 (void)argc;

If the given replacement range is empty, then nothing is inserted at all (as this is a deliberate choice from the user. See
the next section for how to have this function but graciously return “no replacements” for given runtime conditions).

This is employed, for example, in the ztd::text::ascii encoding, which uses a ‘?’ as its replacement code_unit and
code_point value.

1.5. Design Goals and Philosophy 41

ztd.text, Release 0.0.0

Maybe Has A Replacement

If your type might not have a range of replacement characters but you will not know that until run time, regardless of
the situation, the encoding type can signal this by writing different functions:

• maybe_replacement_code_units() (for any failed encode step)

• maybe_replacement_code_points() (for any failed decode step)

These functions return a std::optional of a contiguous range of either code_units or code_points, typically a
std::optional<std::span<const code_unit>> or a std::optional<std::span<const code_point>>. If
the optional is not engaged (it does not have a value stored), then the replacement algorithm uses its default logic to
insert a replacement character, if possible. Otherwise, if it does have a value, it uses that range. If it has a value but the
range is empty, it uses that empty range (and inserts nothing).

This is useful for encodings which provide runtime-erased wrappers or that wrap platform APIs like
Win32, whose CPINFOEXW structure contains both a WCHAR UnicodeDefaultChar; and a BYTE
DefaultChar[MAX_DEFAULTCHAR];. These can be provided as the range values after being stored on the en-
coding, or similar.

The Default

When none of the above can happen, the ztd::text::replacement_handler_t will attempt to insert a Unicode Replacement
Character (, U'\uFFFD') or the ‘?’ character into the stream, in various ways. See ztd::text::replacement_handler_t
for more details on that process!

Marking an encoding as Unicode-Capable

Sometimes, you need to make your own encodings. Whether for legacy reasons or for interoperation reasons, you need
the ability to write an encoding that can losslessly handle all 221 code points. Whether it’s writing a variant of UTF-7,
or dealing with a very specific legacy set like Unicode v6.0 with the Softbank Private Use Area, you are going to need
to be able to say “hey, my encoding can handle all of the code points and therefore deserves to be treated like a Unicode
encoding”. There are 2 ways to do this, one for decisions that can be made at compile time, and one for decisions that
can be made at runtime (e.g., over a variant_encoding<X, Y, Z>).

compile time

The cheapest way to tag an encoding as Unicode Capable and have the library recognize it as such when
ztd::text::is_unicode_encoding is used is to just define a member type definition:

class utf8_v6_softbank {
public:

// ...
using is_unicode_encoding = std::true_type;
// ...

};

That is all you have to write. Both ztd::text::is_unicode_encoding and ztd::text::contains_unicode_encoding will detect
this and use it.

42 Chapter 1. Who Is This Library For?

https://docs.microsoft.com/en-us/windows/win32/api/winnls/ns-winnls-cpinfoexw
https://en.wikipedia.org/wiki/UTF-7

ztd.text, Release 0.0.0

Run-time

If your encoding cannot know at compile time whether or not it is a unicode encoding (e.g., for type-erased encodings,
complex wrapping encodings, or encodings which rely on external operating system resources), you can define a method
instead. When applicable, this will be picked up by the ztd::text::contains_unicode_encoding function. Here is an
example of a runtime, locale-based encoding using platform-knowledge to pick up what the encoding might be, and
determine if it can handle working in Unicode:

1 #endif
2

3

4 struct encode_state {
5 std::mbstate_t c_stdlib_state;
6

7 encode_state() noexcept : c_stdlib_state() {
8 // properly set for c32rtomb state
9 code_unit ghost_ouput[MB_LEN_MAX] {};

10 UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);
11 }
12 };
13

14 bool contains_unicode_encoding() const noexcept {
15 #if defined(_WIN32)
16 CPINFOEXW cp_info {};
17 BOOL success = GetCPInfoExW(CP_THREAD_ACP, 0, &cp_info);
18 if (success == 0) {
19 return false;
20 }
21 switch (cp_info.CodePage) {
22 case 65001: // UTF-8
23 // etc. etc. ...
24 return true;
25 default:
26 break;
27 }
28 empty_code_point_span(), empty_code_unit_span());

That is it. ztd::text::contains_unicode_encoding will detect this and use your function call, so you should never
be calling this or accessing the above compile time classification if necessary and always delegating to the
ztd::text::contains_unicode_encoding function call.

Encoding-Dependent States

Some states need additional information in order to be constructed and used properly. This can be the case
when the encoding has stored some type-erased information, as ztd::text::any_encoding does, or as if you wrote a
variant_encoding<utf8le, utf16be, ...>. For example, given a type_erased_encoding like so:

1 class type_erased_encoding {
2 private:
3 struct erased_state {
4 virtual ~erased_state () {}
5 };
6

(continues on next page)

1.5. Design Goals and Philosophy 43

ztd.text, Release 0.0.0

(continued from previous page)

7 struct erased_encoding {
8 virtual std::unique_ptr<erased_state> create_decode_state() = 0;
9 virtual std::unique_ptr<erased_state> create_encode_state() = 0;

10

11 virtual ~erased_encoding () {}
12 };
13

14 template <typename Encoding>
15 struct typed_encoding : erased_encoding {
16 Encoding encoding;
17

18 struct decode_state : erased_state {
19 using state_type = ztd::text::decode_state_t<Encoding>;
20 state_type state;
21

22 decode_state(const Encoding& some_encoding)
23 : state(ztd::text::make_decode_state(some_encoding)) {
24 // get a decode state from the given encoding
25 }
26 };
27

28 struct encode_state : erased_state {
29 using state_type = ztd::text::encode_state_t<Encoding>;
30 state_type state;
31

32 decode_state(const Encoding& some_encoding)
33 : state(ztd::text::make_encode_state(some_encoding)) {
34 // get a decode state from the given encoding
35 }
36 };
37

38 typed_encoding(Encoding&& some_encoding)
39 : encoding(std::move(some_encoding)) {
40 // move encoding in
41 }
42

43 typed_encoding(const Encoding& some_encoding)
44 : encoding(some_encoding) {
45 // copy encoding in
46 }
47

48 virtual std::unique_ptr<erased_state> create_decode_state() override {
49 return std::make_unique<decode_state>(encoding);
50 }
51

52 virtual std::unique_ptr<erased_state> create_encode_state() override {
53 return std::make_unique<encode_state>(encoding);
54 }
55 };
56

57 std::unique_ptr<erased_encoding> stored;
58

(continues on next page)

44 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

59 public:
60 template <typename AnyEncoding>
61 type_erased(AnyEncoding&& some_encoding)
62 : stored_ptr(std::make_unique<typed_encoding<std::remove_cvref_t<AnyEncoding>>>(
63 std::forward<AnyEncoding>(some_encoding))
64) {
65 // store any encoding in the member unique pointer
66 }
67

68 // ... rest of the implementation
69 };

We can see that creating a state with a default constructor no longer works, because the state itself requires more
information than can be known by just the constructor itself. It needs access to the wrapped encoding. The solution to
this problem is an opt-in when creating your state types by giving your state type a constructor that takes the encoding
type:

1 class type_erased_encoding {
2 // from above, etc. ...
3 public:
4 // public-facing wrappers
5 struct type_erased_decode_state {
6 public:
7 // special constructor!!
8 type_erased_state (const type_erased_encoding& encoding)
9 : stored(encoding.stored->create_decode_state()) {

10

11 }
12 private:
13 std::unique_ptr<erased_state> stored;
14 };
15

16 struct type_erased_encode_state {
17 public:
18 // special constructor!!
19 type_erased_state (const type_erased_encoding& encoding)
20 : stored(encoding.stored->create_encode_state()) {
21 // hold onto type-erased state
22 }
23 private:
24 std::unique_ptr<erased_state> stored;
25 };
26

27 using decode_state = type_erased_state;
28 using encode_state = type_erased_state;
29

30 // ... rest of the Lucky 7 members
31 };

These special constructors will create the necessary state using information from the type_erased_encoding to do
it properly. This will allow us to have states that properly reflect what was erased when we perform a given higher-level
conversion operation or algorithm.

1.5. Design Goals and Philosophy 45

ztd.text, Release 0.0.0

This encoding-aware state-construction behavior is detected by the ztd::text::is_state_independent,
ztd::text::is_decode_state_independent, and ztd::text::is_encode_state_independent classifications.

These classifications are used in the ztd::text::make_decode_state and ztd::text::make_encode_state function calls to
correctly construct a state object, which is what the API uses to make states for its higher-level function calls. If you
are working in a generic context, you should use these functions too when working in this minute details. However, if
you’re not working with templates, consider simply using the already-provided ztd::text::any_encoding to do exactly
what this example shows, with some extra attention to detail and internal optimizations done on your behalf.

Need for Speed: Extension Points

The core encoding/decoding loops and the Lucky 7 design, while flexible, can come with performance degradation due
to its one-by-one nature. There are many well-researched speedups to validating, counting, and converting UTF and
other kinds of text. In order to accommodate these, ztd.text has a number of places to overload the core behavior by
way of named Argument Dependent Lookup (ADL or Koenig Lookup, named after Andrew Koenig) functions that
serve as extension points. They are listed, with their expected argument forms / counts, here.

Extension points: Arguments

For all extension points, arguments are given based on what was input to one of the original higher-level functions.
They have these forms and general requimrents:

• tag - The first argument to every extension point that takes a single encoding. The tag type is
ztd::text::tag<decltype(encoding)> with any const, volatile, or references (& and &&) removed from the
decltype of the encoding.

• duo_tag - The first argument to every extension point that takes 2 encodings. The tag type is
ztd::text::tag<decltype(from_encoding), decltype(to_encoding)> with any const, volatile, or references (&
and &&) removed from the decltype of the two encodings.

• encoding - The encoding used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two encodings used to perform e.g. a transcode operation.

• input - The input range. Can be of any type. Most encodings should at the very least handle basic iterator-iterator
pairs correctly. These are allowed to have const-correct iterators that produce const-correct references, so never
assume you can write to the input, and appropriately const-qualify any std::spans you use.

• output - The output range. Can be of any output range type, such as a unbounded_view<> with a
back_inserter or a std::span for direct memory writes. The types only requirement is that you can write to
it by getting an iterator from begin(...), and calling *it = value;.

• handler - The error handler used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two error handlers used to perform e.g. a transcode operation.

• state - The state objects used to perform the operation. States are always passed by non-const, l-value refer-
ence. Can be prefixed with from_ or to_ in the argument list to show it is one of two states associated with an
encoding with the same prefix.

46 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Extension Points: Forms & Return Types

Overriding any one of these extension points allows you to hook that behavior. It is very much required that you either
use concrete types to provide these ADL extension points, or heavily constrain them using SFINAE (preferred for
C++17 and below) or Concepts (only C++20 and above).

text_decode

Form: text_decode(tag, input, encoding, output, handler, state).

An extension point to speed up decoding operations for a given encoding, its input and outpuut ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a ztd::text::decode_result.

text_encode

Form: text_encode(input, encoding, output, handler, state).

An extension point to speed up encoding operations for a given encoding, its input and outpuut ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a ztd::text::encode_result.

text_transcode

Form: text_transcode(input, from_encoding, output, to_encoding, from_handler, to_handler,
from_state, to_state)

An extension point to speed up transcoding in bulk, for a given encoding pair, its input and output ranges, and its error
handlers and states. Useful for known encoding pairs that have faster conversion paths between them.

Must return a ztd::text::transcode_result.

text_transcode_one

Form: text_transcode_one(input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, to_state)

An extension point to provide faster one-by-one encoding transformations for a given encoding pair, its input and
output ranges, and its error handlers and states. This is not a bulk extension point conversion. It is used in the
ztd::text::transcode_view type to increase the speed of iteration, where possible.

Must return a ztd::text::transcode_result.

1.5. Design Goals and Philosophy 47

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/concepts

ztd.text, Release 0.0.0

text_validate_encodable_as_one

Form: text_validate_encodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
decode_one and an encode_one step during the basic validation loop.

Must return a ztd::text::validate_result.

text_validate_decodable_as_one

Form: text_validate_decodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd::text::validate_result.

text_validate_transcodable_as_one

Form: text_validate_decodable_as_one(input, from_encoding, to_encoding, decode_state,
encode_state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd::text::validate_transcode_result.

text_validate_encodable_as

Form: text_validate_encodable_as(input, encoding, state)

An extension point to provide faster bulk code point validation. There are many tricks to speed up validationg of text
using bit twiddling of the input sequence and more.

Must return a ztd::text::validate_result.

text_validate_decodable_as

Form: text_validate_decodable_as(input, encoding, state)

An extension point to provide faster bulk code unit validation. There are many tricks to speed up validationg of text
using bit twiddling of the input sequence and more.

Must return a ztd::text::validate_result.

48 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

text_count_as_encoded_one

Form: text_count_as_encoded_one(input, encoding, handler, state)

An extension point to provide faster one-by-one counting. Computation cycles can be saved by only needing to check a
subset of things. For example, specific code point ranges can be used to get a count for UTF-16 faster than by encoding
into an empty buffer.

Must return a ztd::text::count_result.

text_count_as_decoded_one

Form: text_count_as_decoded_one(input, encoding, handler, state)

An extension point to provide faster one-by-one counting. Computation cycles can be saved by only needing to check a
subset of things. For example, the leading byte in UTF-8 can provide an immediate count for how many trailing bytes,
leading to a faster counting algorithm.

Must return a ztd::text::count_result.

text_count_as_encoded

Form: text_count_as_encoded(input, encoding, handler, state)

An extension point for faster bulk code point validation.

Must return a ztd::text::count_result.

text_count_as_decoded

Form: text_count_as_decoded(input, encoding, handler, state)

An extension point for faster bulk code point validation.

Must return a ztd::text::count_result.

That’s All of Them

Each of these extension points are important to one person, or another. For example, Daniel Lemire spends a lot of
time optimizing UTF-8 routines for fast validation or Fast Deterministic Finite Automata (DFA) decoding of UTF-8
and more. There are many more sped up counting, validating, encoding, and decoding routines: therefore it is critical
that any library writer or application developer can produce those for their encodings and, on occassion, override the
base behavior and implementation-defined internal speed up written by ztd.text itself.

1.5. Design Goals and Philosophy 49

ztd.text, Release 0.0.0

1.6 Available Encodings

Below is a table of encodings. Here, we track which encodings can be represented using the Lucky 7 technique, whether
or not we have produced such an implementation, and (if applicable) a link to said implementation.

As a general point, we hope to support almost all of the encodings here in one form or another! If you’d like to request
prioritization of a certain encoding, let us know.

Table 1: Encoding Progress Table
Name Stateful Implementable? Implemented
UTF-8 No Yes Yes
UTF-16 No Yes Yes
UTF-32 No Yes Yes
Modified UTF-8 (MUTF-
8)

No Yes Yes

Wobbly Transformation
Format-8 (WTF-8)

No Yes Yes

ASCII No Yes Yes
C Locale Yes (std::mbstate_t) Yes Yes
C Locale, Wide Yes (std::mbstate_t) Yes Yes
String Literials Compiler-Dependent Yes Yes
Wide String Literals Compiler-Dependent Yes Yes
“Anything” Wrapper Typed-Erased Yes Yes
Encoding Scheme Wrapping-Dependent Yes Yes
iconv Encoding Yes Yes WIP
cuneicode Encoding Yes Yes WIP
UTF-EBCDIC No Yes No
UTF-7 Yes Yes No
UTF-7-IMAP Yes Yes No
ISO-8859-1 Unresearched Unconfirmed No
ISO-8859-2 Unresearched Unconfirmed No
ISO-8859-3 Unresearched Unconfirmed No
ISO-8859-4 Unresearched Unconfirmed No
ISO-8859-5 Unresearched Unconfirmed No
ISO-8859-6 Unresearched Unconfirmed No
ISO-8859-7 Unresearched Unconfirmed No
ISO-8859-8 Unresearched Unconfirmed No
ISO-8859-9 Unresearched Unconfirmed No
ISO-8859-10 Unresearched Unconfirmed No
ISO-8859-13 Unresearched Unconfirmed No
ISO-8859-14 Unresearched Unconfirmed No
ISO-8859-15 Unresearched Unconfirmed No
ISO-8859-16 Unresearched Unconfirmed No
KOI8-R Unresearched Unconfirmed No
KOI8-U Unresearched Unconfirmed No
KOI8-RU Unresearched Unconfirmed No
KOI8-T Unresearched Unconfirmed No
ATARIST Unresearched Unconfirmed No
RISCOS-LATIN1 Unresearched Unconfirmed No

continues on next page

50 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Table 1 – continued from previous page
Name Stateful Implementable? Implemented
TDS565 Unresearched Unconfirmed No
CP437 Unresearched Unconfirmed No
CP737 Unresearched Unconfirmed No
CP775 Unresearched Unconfirmed No
CP850 Unresearched Unconfirmed No
CP852 Unresearched Unconfirmed No
CP853 Unresearched Unconfirmed No
CP855 Unresearched Unconfirmed No
CP857 Unresearched Unconfirmed No
CP858 Unresearched Unconfirmed No
CP860 Unresearched Unconfirmed No
CP861 Unresearched Unconfirmed No
CP862 Unresearched Unconfirmed No
CP863 Unresearched Unconfirmed No
CP864 Unresearched Unconfirmed No
CP865 Unresearched Unconfirmed No
CP866 Unresearched Unconfirmed No
CP869 (Nice) Unresearched Unconfirmed No
CP874 Unresearched Unconfirmed No
CP932 Unresearched Unconfirmed No
CP936 Unresearched Unconfirmed No
CP949 Unresearched Unconfirmed No
CP1125 Unresearched Unconfirmed No
CP1131 Unresearched Unconfirmed No
CP1133 Unresearched Unconfirmed No
CP1250 Unresearched Unconfirmed No
CP1251 Unresearched Unconfirmed No
CP1252 (Latin-1) Unresearched Unconfirmed No
CP1253 Unresearched Unconfirmed No
CP1254 Unresearched Unconfirmed No
CP1255 Unresearched Unconfirmed No
CP1256 Unresearched Unconfirmed No
CP1257 Unresearched Unconfirmed No
CP1258 Unresearched Unconfirmed No
MacRoman Unresearched Unconfirmed No
MacCentralEurope Unresearched Unconfirmed No
MacIceland Unresearched Unconfirmed No
MacCroatian Unresearched Unconfirmed No
MacRomania Unresearched Unconfirmed No
MacCryllic Unresearched Unconfirmed No
MacUkraine Unresearched Unconfirmed No
MacGreek Unresearched Unconfirmed No
MacTurkish Unresearched Unconfirmed No
Macintosh Unresearched Unconfirmed No
MacHebrew Unresearched Unconfirmed No
MacArabic Unresearched Unconfirmed No
MacThai Unresearched Unconfirmed No
SHIFT-JIS Yes, shift states Yes No
SHIFT-JISX0213 Yes, shift states Yes No

continues on next page

1.6. Available Encodings 51

ztd.text, Release 0.0.0

Table 1 – continued from previous page
Name Stateful Implementable? Implemented
JOHAB Unresearched Unconfirmed No
GB18030 No (It’s a Unicode Encod-

ing)
Yes No

TACE No Yes No
TSCII No Yes No
EUC-JP Unresearched Unconfirmed No
EUC-JISX0213 Unresearched Unconfirmed No
EUC-CN Unresearched Unconfirmed No
EUC-KR Unresearched Unconfirmed No
EUC-TW Unresearched Unconfirmed No
BIG5 Unresearched Unconfirmed No
BIG5-2003 Unresearched Unconfirmed No
Big5-HKSCS Unresearched Unconfirmed No
Big5-HKSCS:1999 Unresearched Unconfirmed No
Big5-HKSCS:2001 Unresearched Unconfirmed No
Big5-HKSCS:2004 Unresearched Unconfirmed No
GBK Unresearched Unconfirmed No
HZ Unresearched Unconfirmed No
ISO-2022-JP Unresearched Unconfirmed No
ISO-2022-JP-2 Unresearched Unconfirmed No
ISO-2022-JP-1 Unresearched Unconfirmed No
ISO-2022-JP-3 Unresearched Unconfirmed No
ISO-2022-JP-MS Unresearched Unconfirmed No
ISO-2022-CN Unresearched Unconfirmed No
ISO-2022-CN-EXT Unresearched Unconfirmed No
ISO-2022-KR Unresearched Unconfirmed No
VISCII Unresearched Unconfirmed No
ARMSCII-8 Unresearched Unconfirmed No
TCVN Unresearched Unconfirmed No
PT154 Unresearched Unconfirmed No
RK1048 Unresearched Unconfirmed No
RK1048 Unresearched Unconfirmed No
TIS-620 Unresearched Unconfirmed No
MuleLao-1 Unresearched Unconfirmed No
HP-ROMAN8 Unresearched Unconfirmed No
NEXTSTEP Unresearched Unconfirmed No
Georgian-Academy Unresearched Unconfirmed No
Georgian-PS Unresearched Unconfirmed No

If you know of an encoding not listed here, let us know in the issue tracker!

52 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.7 Known Unicode Encodings

Out of all the encodings listed on the encodings page, only a handful are known to be Unicode Encodings. These are
as follows:

• UTF-7

• UTF-7-IMAP

• UTF-8

• UTF-16 (All Endiannesses)

• UTF-32 (All Endiannesses)

• GB18030

• CESU-8

• MUTF-8

• WTF-8

• UTF-1

• UTF-EBCDIC

When the encoding is known at compile time (e.g., it is just a plain object), it contains a is_unicode_encoding
type member that is set to std::true_type. Otherwise, it is left off. This is detected by
ztd::text::contains_unicode_encoding and ztd::text::is_unicode_encoding.

If you know of any others, please let us know!

1.8 Configuring the Library

There are various configuration macros and CMake/build-time switches that will change the behavior of the library or
attempt to use different

• ZTD_TEXT_USE_CUNEICODE (CMake: ZTD_TEXT_USE_CUNEICODE)

– Enables use of the Cuneicode project, which has low-level C routines for converting from one encoding
form to another encoding form. Only includes a limited number of conversions, specifically from and
to the execution encoding to other encodings.

– Makes the ztd::text::cnc_encoding available (accessible directly VIA #include <ztd/text/
cnc_encoding.hpp>)

– Default: off.

– Turned on if the special __has_include directive is present with the compiler and
__has_include(<ztd/cuneicode/cuneicode.h>) works.

• ZTD_TEXT_USE_ICONV (CMake: ZTD_TEXT_USE_ICONV)

– Enables use of the iconv project.

– Attempts to load it from the system at runtime using GetProcAddress, dlopen/dlsym/dlclose.

– Makes the ztd::text::iconv_encoding available (accessible directly VIA #include <ztd/
text/iconv_encoding.hpp>).

– Default: off.

– Not turned on by-default under any conditions.

1.7. Known Unicode Encodings 53

https://ztdcuneicode.rtfd.io
https://www.gnu.org/software/libiconv/

ztd.text, Release 0.0.0

• ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE

– Turns ztd::text::unicode_code_point from a type definition to char32_t to an
implementation-defined class type which enforces the various invariants of being a unicode
code point.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_UNICODE_CODE_POINT_INVARIANT_ABORT

– If ztd::text::unicode_code_point is a distinct class (as controlled by
ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE), each construction of a uni-
code_code_point object that violates the required invariants of a unicode code point will trigger an
abort.

– It is normally a ZTD_TEXT_ASSERT(...) or equivalent.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_DEFAULT_HANDLER_THROWS

– Makes the ztd::text::default_handler into a throwing handler rather than a replacement char-
acter handler.

– This is not at all recommended since malformed text (or text assumed to be the wrong encoding) is
common, and not properly handling a thrown exception can result in what is, effectively, a denial-of-
service attack for things which need to continually handle untrusted input.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE

– Turns ztd::text::unicode_scalar_value from a type definition to char32_t to an
implemenation-defined class type which enforces the various invariants of being a unicode
scalar value.

– Default: on.

– Not turned off by-default under any conditions.

• ZTD_TEXT_UNICODE_SCALAR_VALUE_INVARIANT_ABORT

– If ztd::text::unicode_scalar_value is a distinct class (as controlled by
ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE), each construction of a uni-
code_scalar_value object that violates the required invariants of a unicode scalar value will
trigger an abort.

– It is normally a ZTD_TEXT_ASSERT(...) or equivalent.

– Default: off.

– Not turned on by-default under any conditions.

• ZTD_CXX_COMPILE_TIME_ENCODING_NAME

– Gives the ztd::text::literal encoding a name that matches what the encoding of string literals ("") are.

– Overrides any of library’s heuristics and shenanigans to determine the string literal encoding.

– If this does not match the actual string literal encoding, it can cause Undefined Behavior.

54 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

– Default: A complex set of platform checks. See ztd::text::literal encoding for more details.

– Not turned on normally under any circumstances.

• ZTD_TEXT_YES_PLEASE_DESTROY_MY_LITERALS_UTTERLY_I_MEAN_IT

– Enables ignoring the fact that the string literal ("") encoding cannot be determined/discovered on the
given platform for the ztd::text::literal encoding.

– Will cause Undefined Behavior if a string literal or wide string literal is encoded or decoded to/from
and the encoding does not match whatever pot-shot guess the system takes.

– Default: off.

– Not turned on by-default under any conditions.

– Please don’t use this unless you have some really, really weird setup that requires messing every-
thing up. . .

• ZTD_CXX_COMPILE_TIME_WIDE_ENCODING_NAME

– Gives the ztd::text::wide_literal encoding a name that matches what the encoding of wide string literals
(L"") are.

– Overrides any of library’s heuristics and shenanigans to determine the wide string literal encoding.

– If this does not match the actual wide string literal encoding, it can cause Undefined Behavior.

– Default: A complex set of platform checks. See ztd::text::wide_literal encoding for more details.

– Not turned on normally under any circumstances.

• ZTD_TEXT_YES_PLEASE_DESTROY_MY_WIDE_LITERALS_UTTERLY_I_MEAN_IT

– Enables ignoring the fact that the wide string literal (L"") encoding cannot be determined/discovered
on the given platform for the ztd::text::wide_literal encoding.

– Will cause Undefined Behavior if a string literal or wide string literal is encoded or decoded to/from
and the encoding does not match whatever pot-shot guess the system takes.

– Default: off.

– Not turned on by-default under any conditions.

– Please don’t use this unless you have some really, really weird setup that requires messing every-
thing up. . .

• ZTD_TEXT_INTERMEDIATE_DECODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_DECODE_BUFFER_BYTE_SIZE to have it used
instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

• ZTD_TEXT_INTERMEDIATE_ENCODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

1.8. Configuring the Library 55

ztd.text, Release 0.0.0

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_ENCODE_BUFFER_BYTE_SIZE to have it used
instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

• ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE

– Changes the default intermediate buffer size placed on the stack for temporary operations.

– Default: a series of compile time platform checking heuristics to determine a generally useful buffer
size that will not overflow the stack.

– Not turned on by default under any conditions.

– Specify a numeric value for ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE to have it
used instead.

– Will always be used as the input to a function determining the maximum between this type and a buffer
size consistent with ztd::text::max_code_points_v or ztd::text::max_code_points_v.

1.9 API Reference

This is simply a listing of all the available pages containing various APIs, or links to pages that link to API documen-
tation.

1.9.1 Containers

basic_text (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

The basic_text class provides functionality similar to std::string but for performing it on encoded, normalized
text.

template<typename _Encoding, typename _NormalizationForm = nfkc, typename _Container =
::std::basic_string<code_unit_t<_Encoding>>, typename _ErrorHandler = default_handler_t>
class ztd::text::basic_text : private basic_text_view<_Encoding, _NormalizationForm, _Container,
_ErrorHandler>

A wrapper (container adapter) that takes the given _Encoding type and _NormalizationForm type and imposes
it over the given chosen _Container storage for the purposes of allowing users to examine the text.

tparam _Encoding The encoding to store any input and presented text as.

tparam _NormalizationForm The normalization form to impose on the stored text’s sequences.

tparam _Container The container type that will be stored within this ztd::text::basic_text using the
code units from the _Encoding type.

tparam _ErrorHandler The default error handler to use for any and all operations on text. Gener-
ally, most operations will provide room to override this.

56 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using range_type = typename __base_t::range_type
The type that this view is wrapping.

using encoding_type = typename __base_t::encoding_type
The encoding type that this view is using to interpret the underlying sequence of code units.

using state_type = typename __base_t::state_type
The encoding type that this view is using to interpret the underlying sequence of code units.

using normalization_type = typename __base_t::normalization_type
The normalization form type this view is imposing on top of the encoded sequence.

using error_handler_type = typename __base_t::error_handler_type
The error handling type used by default for any problems in conversions.

Private Functions

inline constexpr _CodePointView<_ViewErrorHandler> code_points(state_type __state,
_ViewErrorHandler
&&__error_handler) const noexcept

Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Moves the provided __state in as the “starting point”.

Template Parameters _ViewErrorHandler – The type of the passed-in error handler to use for
these operations.

Parameters

• __state – [in] The state to use for this code point view.

• __error_handler – [in] The error handler to look at the code points for this code point
view.

inline constexpr _CodePointView code_points(state_type __state) const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Moves the provided __state in as the “starting point”.

Parameters __state – [in] The state to use for this code point view.

inline constexpr _CodePointView code_points() const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Copies the stored state within the ztd::text::basic_text_view to perform the code point iteration
process.

inline constexpr range_type &&base() && noexcept
Access the storage as an r-value reference.

1.9. API Reference 57

ztd.text, Release 0.0.0

inline constexpr const range_type &base() const & noexcept
Access the storage as a const-qualified l-value reference.

inline constexpr range_type &base() & noexcept
Access the storage as an l-value reference.

using ztd::text::text = basic_text<execution_t>
A container for storing text in the locale, runtime-based encoding.

using ztd::text::wtext = basic_text<wide_execution_t>
A container for storing text in the locale, runtime-based wide encoding.

using ztd::text::ltext = basic_text<literal_t>
A container for storing text in the string literal_t encoding.

using ztd::text::wltext = basic_text<wide_literal_t>
A container for storing text in the wide string literal_t encoding.

using ztd::text::u8text = basic_text<utf8_t>
A container for storing text in the UTF-8 encoding.

using ztd::text::u16text = basic_text<utf16_t>
A container for storing text in the UTF-16 encoding.

using ztd::text::u32text = basic_text<utf32_t>
A container for storing text in the UTF-32 encoding.

1.9.2 Views

basic_text_view (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

The basic_text_view class provides a one-by-one view of the stored range’s code points and other functionality in
a more complete form that goes beyond just code point iteration or code unit iteration like ztd::text::decode_view or
ztd::text::encode_view.

template<typename _Encoding, typename _NormalizationForm = nfkc, typename _Range =
::std::basic_string_view<code_unit_t<_Encoding>>, typename _ErrorHandler = default_handler_t>
class ztd::text::basic_text_view

A view over a sequence of code units. The code units are expected to be of the given encoding and normalization
form.

Remark The default type for this is a basic_string_view templated on the code unit type from the encoding. The
error handler is also the default careless error handler, meaning that any lossy conversions will automatically
cause a compile time error.

tparam _Encoding The encoding to store any input and presented text as.

tparam _NormalizationForm The normalization form to impose on the stored text’s sequences.

58 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

tparam _Range The range type that will be stored within this ztd::text::basic_text_view and exam-
ined using the iterators, following the _Encoding type decoding procedure.

tparam _ErrorHandler The default error handler to use for any and all operations on text. Gener-
ally, most operations will provide room to override this.

Public Types

using range_type = _Range
The type that this view is wrapping.

using encoding_type = _Encoding
The encoding type that this view is using to interpret the underlying sequence of code units.

using state_type = encode_state_t<_Encoding>
The encoding type that this view is using to interpret the underlying sequence of code units.

using normalization_type = _NormalizationForm
The normalization form type this view is imposing on top of the encoded sequence.

using error_handler_type = _ErrorHandler
The error handling type used by default for any problems in conversions.

Public Functions

template<typename _ViewErrorHandler>
inline constexpr _CodePointView<_ViewErrorHandler> code_points(state_type __state,

_ViewErrorHandler
&&__error_handler) const noexcept

Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Moves the provided __state in as the “starting point”.

Template Parameters _ViewErrorHandler – The type of the passed-in error handler to use for
these operations.

Parameters

• __state – [in] The state to use for this code point view.

• __error_handler – [in] The error handler to look at the code points for this code point
view.

inline constexpr _CodePointView code_points(state_type __state) const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Moves the provided __state in as the “starting point”.

Parameters __state – [in] The state to use for this code point view.

1.9. API Reference 59

ztd.text, Release 0.0.0

inline constexpr _CodePointView code_points() const noexcept
Returns a view over the code points of this type, decoding “on the fly”/”lazily”.

Remark Copies the stored state within the ztd::text::basic_text_view to perform the code point iteration
process.

inline constexpr range_type &&base() && noexcept
Access the storage as an r-value reference.

inline constexpr const range_type &base() const & noexcept
Access the storage as a const-qualified l-value reference.

inline constexpr range_type &base() & noexcept
Access the storage as an l-value reference.

using ztd::text::text_view = basic_text_view<execution_t>
A view for examining text in the locale, runtime-based encoding.

using ztd::text::wtext_view = basic_text_view<wide_execution_t>
A view for examining text in the locale, runtime-based wide encoding.

using ztd::text::ltext_view = basic_text_view<literal_t>
A view for examining text in the string literal_t encoding.

using ztd::text::wltext_view = basic_text_view<wide_literal_t>
A view for examining text in the wide string literal_t encoding.

using ztd::text::u8text_view = basic_text_view<utf8_t>
A view for examining text in the UTF-8 encoding.

using ztd::text::u16text_view = basic_text_view<utf16_t>
A view for examining text in the UTF-16 encoding.

using ztd::text::u32text_view = basic_text_view<utf32_t>
A view for examining text in the UTF-32 encoding.

decode_view

The decode_view class provides a one-by-one view of the stored range’s code points as the desired encoding’s code
units. Dereferencing the iterators returns a single code_point value corresponding to the desired encoding’s transfor-
mation of the internal code units.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but is
fine for one-at-a-time encoding operations. To decode eagerly and in bulk, see the decode functions.

template<typename _Encoding, typename _Range = ::std::basic_string_view<code_unit_t<_Encoding>>, typename
_ErrorHandler = default_handler_t, typename _State = decode_state_t<_Encoding>>
class ztd::text::decode_view

A view over a range of code points, presenting the code points as code units. Uses the _Encoding specified to
do so.

60 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark The view presents code point one at a time, regardless of how many code points are output by one
decode operation. This means if, for example, four (4) UTF-8 code units becomes two (2) UTF-16 code
points, it will present one code point at a time. If you are looking to explicitly know what a single decode
operation maps into as far as number of code points to code units (and vice-versa), you will have to use
lower-level interfaces.

tparam _Encoding The encoding to read the underlying range of code points as.

tparam _Range The range of input that will be fed into the _FromEncoding’s decode operation.

tparam _ErrorHandler The error handler for any encode-step failures.

tparam _State The state type to use for the encode operations to intermediate code points.

Public Types

using iterator = decode_iterator<_Encoding, _StoredRange, _ErrorHandler, _State>
The iterator type for this view.

using sentinel = decode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using encoding_type = _Encoding
The encoding type used for transformations.

using error_handler_type = _ErrorHandler
The error handler when a decode operation fails.

using state_type = decode_state_t<encoding_type>
The state type used for decode operations.

Public Functions

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
decode_view> && !::std::is_same_v<remove_cvref_t<_ArgRange>, iterator>>* = nullptr>
inline constexpr decode_view(_ArgRange &&__range) noexcept(::std::is_nothrow_constructible_v<iterator,

_ArgRange>)
Constructs a decode_view from the underlying range.

Remark The stored encoding, error handler, and state type are default-constructed.

Parameters __range – [in] The input range to wrap and iterate over.

inline constexpr decode_view(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type>)

Constructs a decode_view from the underlying range.

Parameters

1.9. API Reference 61

ztd.text, Release 0.0.0

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

inline constexpr decode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler) noexcept(::std::is_nothrow_constructible_v<iterator,
range_type, encoding_type, error_handler_type>)

Constructs a decode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

• __error_handler – [in] The error handler to store in this view.

inline constexpr decode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type, error_handler_type, state_type>)

Constructs a decode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .decode or equivalent functionality on.

• __error_handler – [in] The error handler to store in this view.

• __state – [in] The state to user for the decode operation.

inline constexpr decode_view(iterator __it) noexcept(::std::is_nothrow_move_constructible_v<iterator>)
Constructs an encoding_view from one of its iterators, reconstituting the range.

Parameters __it – [in] A previously-made decode_view iterator.

constexpr decode_view() = default
Default constructor. Defaulted.

constexpr decode_view(const decode_view&) = default
Copy constructor. Defaulted.

constexpr decode_view(decode_view&&) = default
Move constructor. Defaulted.

constexpr decode_view &operator=(const decode_view&) = default
Copy assignment operator. Defaulted.

constexpr decode_view &operator=(decode_view&&) = default
Move assignment operator. Defaulted.

inline constexpr iterator begin() & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr iterator begin() const & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr iterator begin() && noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

62 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

encode_view

The encode_view class provides a one-by-one view of the stored range’s code points as the desired encoding’s code
units. Dereferencing the iterators returns a single code_unit value corresponding to the desired encoding’s transfor-
mation of the internal code points.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but is
fine for one-at-a-time encoding operations. To encode eagerly and in bulk, see the encode functions.

template<typename _Encoding, typename _Range = ::std::basic_string_view<code_point_t<_Encoding>>,
typename _ErrorHandler = default_handler_t, typename _State = encode_state_t<_Encoding>>
class ztd::text::encode_view

A view over a range of code points, presenting the code points as code units. Uses the _Encoding specified to
do so.

Remark The view presents code units one at a time, regardless of how many code units are output by one
decode operation. This means if, for example, one (1) UTF-32 code point becomes four (4) UTF-8 code
units, it will present each code unit one at a time. If you are looking to explicitly know what a single encode
operation maps into as far as number of code points to code units (and vice-versa), you will have to use
lower-level interfaces.

tparam _Encoding The encoding to read the underlying range of code points as.

tparam _Range The range of input that will be fed into the _FromEncoding’s decode operation.

tparam _ErrorHandler The error handler for any encode-step failures.

tparam _State The state type to use for the encode operations to intermediate code points.

Public Types

using iterator = encode_iterator<_Encoding, _StoredRange, _ErrorHandler, _State>
The iterator type for this view.

using sentinel = encode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using encoding_type = _Encoding
The encoding type used for transformations.

using error_handler_type = _ErrorHandler
The error handler when an encode operation fails.

using state_type = encode_state_t<encoding_type>
The state type used for encode operations.

1.9. API Reference 63

ztd.text, Release 0.0.0

Public Functions

constexpr encode_view() = default
Default constructor. Defaulted.

constexpr encode_view(const encode_view&) = default
Copy constructor. Defaulted.

constexpr encode_view(encode_view&&) = default
Move constructor. Defaulted.

template<typename _ArgRange, ::std::enable_if_t<!::std::is_same_v<remove_cvref_t<_ArgRange>,
encode_view> && !::std::is_same_v<remove_cvref_t<_ArgRange>, iterator>>* = nullptr>
inline constexpr encode_view(_ArgRange &&__range) noexcept(::std::is_nothrow_constructible_v<iterator,

_ArgRange>)
Constructs an encode_view from the underlying range.

Remark the stored encoding, error handler, and state type are default-constructed.

Parameters __range – [in] The input range to wrap and iterate over.

inline constexpr encode_view(range_type __range, encoding_type __encoding)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type>)

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

inline constexpr encode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler) noexcept(::std::is_nothrow_constructible_v<iterator,
range_type, encoding_type, error_handler_type>)

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

• __error_handler – [in] A previously-made encode_view iterator.

inline constexpr encode_view(range_type __range, encoding_type __encoding, error_handler_type
__error_handler, state_type __state)
noexcept(::std::is_nothrow_constructible_v<iterator, range_type,
encoding_type, error_handler_type, state_type>)

Constructs an encode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __encoding – [in] The encoding object to call .encode or equivalent functionality on.

• __error_handler – [in] A previously-made encode_view iterator.

• __state – [in] The state to user for the encode operation.

64 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr encode_view(iterator __it) noexcept(::std::is_nothrow_move_constructible_v<iterator>)
Constructs an encoding_view from one of its iterators, reconstituting the range.

Parameters __it – [in] A previously-made encode_view iterator.

constexpr encode_view &operator=(const encode_view&) = default
Copy assignment operator. Defaulted.

constexpr encode_view &operator=(encode_view&&) = default
Move assignment operator. Defaulted.

inline constexpr iterator begin() & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr iterator begin() const & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr iterator begin() && noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

transcode_view

The transcode_view class provides a one-by-one view of the stored range’s code units as another encoding’s code
units. Dereferencing the iterators returns a single code_unit value corresponding to the desired encoding’s type.

The range-based classes are excellent ways to walk over units of information in a low-memory environment, as they
only store the minimum amount of data necessary to perform their operations on the fly. This reduces the speed but is
fine for one-at-a-time encoding operations. To decode eagerly and in bulk, see the transcode functions.

template<typename _FromEncoding, typename _ToEncoding = utf8_t, typename _Range =
::std::basic_string_view<code_unit_t<_FromEncoding>>, typename _FromErrorHandler = default_handler_t,
typename _ToErrorHandler = default_handler_t, typename _FromState = decode_state_t<_FromEncoding>,
typename _ToState = encode_state_t<_ToEncoding>>
class ztd::text::transcode_view

A transcoding iterator that takes an input of code units and provides an output over the code units of the
desired _ToEncoding after converting from the _FromEncoding in a fashion that will never produce a
ztd::text::encoding_error::insufficient_output error.

Remark This type produces proxies as their reference type, and are only readable, not writable iterators. The
type will also try many different shortcuts for decoding the input and encoding the intermediates, respec-
tively, including invoking a few customization points for either decode_one. or encode_one . It may also
call transcode_one to bypass having to do the round-trip through two encodings, which an encoding pair
that a developer is interested in can use to do the conversion more quickly. The view presents code units
one at a time, regardless of how many code units are output by one decode operation. This means if, for
example, one (1) UTF-16 code unit becomes two (2) UTF-8 code units, it will present each code unit one at
a time. If you are looking to explicitly know each collection of characters, you will have to use lower-level
interfaces.

tparam _FromEncoding The encoding to read the underlying range of code points as.

tparam _ToEncoding The encoding to read the underlying range of code points as.

tparam _Range The range of input that will be fed into the _FromEncoding’s decode operation.

tparam _FromErrorHandler The error handler for any decode-step failures.

1.9. API Reference 65

ztd.text, Release 0.0.0

tparam _ToErrorHandler The error handler for any encode-step failures.

tparam _FromState The state type to use for the decode operations to intermediate code points.

tparam _ToState The state type to use for the encode operations to intermediate code points.

Public Types

using iterator = transcode_iterator<_FromEncoding, _ToEncoding, _Range, _FromErrorHandler,
_ToErrorHandler, _FromState, _ToState>

The iterator type for this view.

using sentinel = transcode_sentinel_t
The sentinel type for this view.

using range_type = _Range
The underlying range type.

using from_encoding_type = _FromEncoding
The encoding type used for decoding to intermediate code point storage.

using to_encoding_type = _ToEncoding
The encoding type used for encoding to the final code units storage.

using from_error_handler_type = _FromErrorHandler
The error handler when a decode operation fails.

using to_error_handler_type = _ToErrorHandler
The error handler when an encode operation fails.

using from_state_type = _FromState
The state type used for decode operations.

using to_state_type = _ToState
The state type used for encode operations.

Public Functions

inline constexpr transcode_view(range_type __range) noexcept
Constructs a transcode_view from the underlying range.

Parameters __range – [in] The input range to wrap and iterate over.

inline constexpr transcode_view(range_type __range, to_encoding_type __to_encoding) noexcept
Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

66 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding) noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler)
noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

inline constexpr transcode_view(range_type __range, from_encoding_type __from_encoding,
to_encoding_type __to_encoding, from_error_handler_type
__from_error_handler, to_error_handler_type __to_error_handler,
from_state_type __from_state, to_state_type __to_state) noexcept

Constructs a transcode_view from the underlying range.

Parameters

• __range – [in] The input range to wrap and iterate over.

• __from_encoding – [in] The encoding object to call decode_one or equivalent function-
ality on.

• __to_encoding – [in] The encoding object to call encode_one or equivalent functional-
ity on.

• __from_error_handler – [in] The error handler for decode operations to store in this
view.

• __to_error_handler – [in] The error handler for encode operations to store in this view.

• __from_state – [in] The state to user for the decode operation.

• __to_state – [in] The state to user for the decode operation.

inline constexpr iterator begin() & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr iterator begin() const & noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

1.9. API Reference 67

ztd.text, Release 0.0.0

inline constexpr iterator begin() && noexcept
The beginning of the range. Uses a sentinel type and not a special iterator.

inline constexpr sentinel end() const noexcept
The end of the range. Uses a sentinel type and not a special iterator.

1.9.3 Encodings

See also the top-level encodings page for more details about the overall status and known vs. implemented encodings.

any_encoding

any_encoding is a class type whose sole purpose is to provide a type-generic, byte-based, runtime-deferred way of
handling encodings.

using ztd::text::any_encoding = any_byte_encoding<::std::byte>
The canonical erased encoding type which uses a std::byte as its code unit type and an unicode_code_point
as its code point type, with spans for input and output operations.

Remark If the input encoding does not match std::byte, it will be first wrapped in a
ztd::text::encoding_scheme first.

Base Template

template<typename _Byte, typename _CodePoint = unicode_code_point>

class ztd::text::any_byte_encoding : public ztd::text::any_encoding_with<_Byte, const _CodePoint, const
_Byte, _CodePoint>

An encoding type that wraps up other encodings to specifically traffic in the given _Byte type provided, which
is typically set to std::byte .

Remark This type traffics solely in std::span s, which for most people is fine. Others may want to interface
with different iterator types (e.g., from a custom Rope implementation or other). For those, one must first
create ranges that can operate with those iterators, then use them themselves. (It’s not an ideal process at
the moment, and we are looking to make this experience better.) It is recommended to use the provided
ztd::text::any_encoding type definition instead of accessing this directly, unless you have a reason for using
a different byte type (e.g., interfacing with legacy APIs).

tparam _Byte The byte type to use. Typically, this is either unsigned char or std::byte .

68 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using decode_state = any_decode_state
The state that can be used between calls to decode.

Remark This is an opaque struct with no members. It follows the “encoding-dependent state” model,
which means it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize
its state.

using encode_state = any_encode_state
The state that can be used between calls to encode.

Remark This is an opaque struct with no members. It follows the “encoding-dependent state” model,
which means it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize
its state.

using code_unit = ranges::range_value_type_t<_EncodeCodeUnits>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = ranges::range_value_type_t<_DecodeCodePoints>
The individual units that result from a decode operation or as used as input to an encode operation.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code point values.

Remark This is always going to be false because this is a type-erased encoding; this value is determined
by a runtime decision, which means that the most conservative and truthful answer is selected for this
property.

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

Remark This is always going to be false because this is a type-erased encoding; this value is determined
by a runtime decision, which means that the most conservative and truthful answer is selected for this
property.

Public Functions

any_byte_encoding() = delete
Cannot default-construct a ztd::text::any_byte_encoding object.

template<typename _Encoding, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<_Encoding,
any_byte_encoding> && !::std::is_same_v<_Encoding, __base_t> &&
!is_specialization_of_v<remove_cvref_t<_Encoding>, ::std::in_place_type_t>>* = nullptr>
inline any_byte_encoding(_Encoding &&__encoding, _Args&&... __args)

Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

1.9. API Reference 69

ztd.text, Release 0.0.0

Remark If the provided encoding does not have a byte code_unit type, it is wrapped in an
ztd::text::encoding_scheme first.

Parameters

• __encoding – [in] The encoding object that informs the ztd::text::any_byte_encoding
what encoding object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

template<typename _Encoding, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<_Byte,
code_unit_t<remove_cvref_t<_Encoding>>>>* = nullptr>
inline any_byte_encoding(::std::in_place_type_t<_Encoding>, _Args&&... __args)

Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

Remark If the provided encoding does not have a byte code_unit type, it is wrapped in an
ztd::text::encoding_scheme first.

Template Parameters _Encoding – The Encoding specified by the text_tag argument.

Parameters __args – [in] Any additional arguments used to construct the encoding in the erased
storage.

template<typename _Encoding, typename ..._Args, ::std::enable_if_t<::std::is_same_v<_Byte,
code_unit_t<remove_cvref_t<_Encoding>>>>* = nullptr>
inline any_byte_encoding(::std::in_place_type_t<_Encoding> __tag, _Args&&... __args)

Constructs a ztd::text::any_byte_encoding with the encoding object and any additional arguments.

Remark If the provided encoding does not have a byte code_unit type, it is wrapped in an
ztd::text::encoding_scheme first.

Template Parameters _Encoding – The Encoding specified by the text_tag argument.

Parameters

• __tag – [in] A text_tag containing the encoding type.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

any_byte_encoding(const any_byte_encoding&) = delete
Cannot copy-construct a ztd::text::any_byte_encoding object.

any_byte_encoding &operator=(const any_byte_encoding&) = delete
Cannot copy-assign a ztd::text::any_byte_encoding object.

any_byte_encoding(any_byte_encoding&&) = default
Move-constructs a ztd::text::any_byte_encoding from the provided r-value reference.

Remark This leaves the passed-in r-value reference without an encoding object. Calling any function on a
moved-fron ztd::text::any_byte_encoding, except for destruction, is a violation and invokes Undefined
Behavior (generally, a crash).

70 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

any_byte_encoding &operator=(any_byte_encoding&&) = default
Move-assigns a ztd::text::any_byte_encoding from the provided r-value reference.

Remark This leaves the passed-in r-value reference without an encoding object. Calling any function on a
moved-fron ztd::text::any_byte_encoding, except for destruction, is a violation and invokes Undefined
Behavior (generally, a crash).

inline ::std::optional<::ztd::span<const code_point>> maybe_replacement_code_points() const noexcept
Retrieves the replacement code points for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns A std::optional of ztd::span of const code_points. The returned
std::optional value is engaged (has a value) if the stored encoding has a valid
replacement_code_points function and it can be called. If it does not, then the li-
brary checks to see if the maybe_replacement_code_points function exists, and re-
turns the std::optional from that type directly. If neither are present, an unengaged
std::optional is returned.

inline ::std::optional<::ztd::span<const code_unit>> maybe_replacement_code_units() const noexcept
Retrieves the replacement code units for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns A std::optional of ztd::span of const code_units. The returned
std::optional value is engaged (has a value) if the stored encoding has a valid
replacement_code_units function and it can be called. If it does not, then the
library checks to see if the maybe_replacement_code_units function exists, and re-
turns the std::optional from that type directly. If neither are present, an unengaged
std::optional is returned.

inline bool contains_unicode_encoding() const noexcept
Returns whether or not the encoding stored in this ztd::text::any_encoding_with is a Unicode encoding.

Remark This can be useful to know, in advance, whether or not there is a chance for lossy behavior. Even
if, at compile time, various functions will demand you use an error handler, this runtime property can
help you get a decent idea of just how bad and lossy this conversion might be compared to normal UTF
conversion formats.

inline __decode_result decode_one(_DecodeCodeUnits __input, _DecodeCodePoints __output,
__decode_error_handler __error_handler, decode_state &__state) const

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

1.9. API Reference 71

ztd.text, Release 0.0.0

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

inline __encode_result encode_one(_EncodeCodePoints __input, _EncodeCodeUnits __output,
__encode_error_handler __error_handler, encode_state &__state) const

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = _MaxCodePoints
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units = _MaxCodeUnits
The maximum code units a single complete operation of encoding can produce.

any_encoding_with

This is the lowest level base template, any_encoding_with, that sits beneath any_encoding and any_byte_encoding.
It is recommended for power users with specific goals for the input and output types of the encode and decode
operations, where normal buffer-based I/O is unsuitable. In general, you should be relying on any_encoding and
any_byte_encoding.

template<typename _EncodeCodeUnits, typename _EncodeCodePoints, typename _DecodeCodeUnits,
typename _DecodeCodePoints, ::std::size_t _MaxCodeUnits =
__txt_detail::__default_max_code_units_any_encoding, ::std::size_t _MaxCodePoints =
__txt_detail::__default_max_code_points_any_encoding>
class ztd::text::any_encoding_with

An encoding class which has the given encode output and input, as well as the decode input and output ranges,
provided as fixed types alongside the maximum number of code units put in and pushed out.

72 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark This class is generally interacted with by using its derivate class, ztd::text::any_byte_encoding, and
its convenience alias, ztd::text::any_encoding. This class’s use is recommended only for power users who
have encoding ranges that cannot be interacted with through ztd::span and therefore need other ways.
We are looking into ways to produce a ranges::subrange<any_iterator> as a completely generic range to aid
those individuals who do not want to deal in just ztd::span s.

tparam _EncodeCodeUnits The output of encode_one and related operations.

tparam _EncodeCodePoints The input of encode_one and related operations.

tparam _DecodeCodeUnits The input of decode_one and related operations.

tparam _DecodeCodePoints The output of decode_one and related operations.

tparam _MaxCodeUnits The maximum number of code units that can be output through a given
operation. Directly related to the maximum_code_units inline constexpr variable definition.

tparam _MaxCodePoints The maximum number of code points that can be output through a given
operation. Directly related to the maximum_code_points inline constexpr variable definition.

Subclassed by any_byte_encoding< _Byte, _CodePoint >

Public Types

using decode_state = any_decode_state
The state that can be used between calls to decode.

Remark This is an opaque struct with no members. It follows the “encoding-dependent state” model,
which means it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize
its state.

using encode_state = any_encode_state
The state that can be used between calls to encode.

Remark This is an opaque struct with no members. It follows the “encoding-dependent state” model,
which means it has a constructor that takes an ztd::text::any_encoding_with so it can properly initialize
its state.

using code_unit = ranges::range_value_type_t<_EncodeCodeUnits>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = ranges::range_value_type_t<_DecodeCodePoints>
The individual units that result from a decode operation or as used as input to an encode operation.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code point values.

Remark This is always going to be false because this is a type-erased encoding; this value is determined
by a runtime decision, which means that the most conservative and truthful answer is selected for this
property.

1.9. API Reference 73

ztd.text, Release 0.0.0

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

Remark This is always going to be false because this is a type-erased encoding; this value is determined
by a runtime decision, which means that the most conservative and truthful answer is selected for this
property.

Public Functions

any_encoding_with() = delete
Cannot default-construct a ztd::text::any_encoding_with object.

template<typename _Encoding, typename ..._Args, ::std::enable_if_t<!::std::is_same_v<_Encoding,
any_encoding_with> && !is_specialization_of_v<remove_cvref_t<_Encoding>, ::std::in_place_type_t>>* =
nullptr>
inline any_encoding_with(_Encoding &&__encoding, _Args&&... __args)

Constructs a ztd::text::any_encoding_with with the encoding object and any additional arguments.

Template Parameters _Encoding – The Encoding specified by the first argument.

Parameters

• __encoding – [in] The encoding object that informs the ztd::text::any_encoding_with
what encoding object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

template<typename _Encoding, typename ..._Args>
inline any_encoding_with(::std::in_place_type_t<_Encoding> __tag, _Args&&... __args)

Constructs a ztd::text::any_encoding_with with the encoding type specified in the __tag argument.

Template Parameters _Encoding – The Encoding specified by the __tag argument.

Parameters

• __tag – [in] The type marker that informs the ztd::text::any_encoding_with what encoding
object to store.

• __args – [in] Any additional arguments used to construct the encoding in the erased stor-
age.

any_encoding_with(const any_encoding_with&) = delete
Cannot copy-construct a ztd::text::any_encoding_with object.

any_encoding_with &operator=(const any_encoding_with&) = delete
Cannot copy-assign a ztd::text::any_encoding_with object.

any_encoding_with(any_encoding_with&&) = default
Move-constructs a ztd::text::any_encoding_with from the provided r-value reference.

Remark This leaves the passed-in r-value reference without an encoding object. Calling any function on a
moved-fron ztd::text::any_encoding_with, except for destruction, is a violation and invokes Undefined
Behavior (generally, a crash).

any_encoding_with &operator=(any_encoding_with&&) = default
Move-assigns a ztd::text::any_encoding_with from the provided r-value reference.

74 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark This leaves the passed-in r-value reference without an encoding object. Calling any function on a
moved-fron ztd::text::any_encoding_with, except for destruction, is a violation and invokes Undefined
Behavior (generally, a crash).

inline ::std::optional<::ztd::span<const code_point>> maybe_replacement_code_points() const noexcept
Retrieves the replacement code points for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns A std::optional of ztd::span of const code_points. The returned
std::optional value is engaged (has a value) if the stored encoding has a valid
replacement_code_points function and it can be called. If it does not, then the li-
brary checks to see if the maybe_replacement_code_points function exists, and re-
turns the std::optional from that type directly. If neither are present, an unengaged
std::optional is returned.

inline ::std::optional<::ztd::span<const code_unit>> maybe_replacement_code_units() const noexcept
Retrieves the replacement code units for when conversions fail and ztd::text::replacement_handler_t (or
equivalent) needs to make a substitution.

Returns A std::optional of ztd::span of const code_units. The returned
std::optional value is engaged (has a value) if the stored encoding has a valid
replacement_code_units function and it can be called. If it does not, then the
library checks to see if the maybe_replacement_code_units function exists, and re-
turns the std::optional from that type directly. If neither are present, an unengaged
std::optional is returned.

inline bool contains_unicode_encoding() const noexcept
Returns whether or not the encoding stored in this ztd::text::any_encoding_with is a Unicode encoding.

Remark This can be useful to know, in advance, whether or not there is a chance for lossy behavior. Even
if, at compile time, various functions will demand you use an error handler, this runtime property can
help you get a decent idea of just how bad and lossy this conversion might be compared to normal UTF
conversion formats.

inline __decode_result decode_one(_DecodeCodeUnits __input, _DecodeCodePoints __output,
__decode_error_handler __error_handler, decode_state &__state) const

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

1.9. API Reference 75

ztd.text, Release 0.0.0

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

inline __encode_result encode_one(_EncodeCodePoints __input, _EncodeCodeUnits __output,
__encode_error_handler __error_handler, encode_state &__state) const

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = _MaxCodePoints
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units = _MaxCodeUnits
The maximum code units a single complete operation of encoding can produce.

class any_decode_state
The state for any encoding’s decode state.

Public Functions

inline any_decode_state(const any_encoding_with &__encoding)
Creates a state properly initialized from the stored encoding.

any_decode_state(const any_decode_state&) = delete
You cannot copy construct an any_decode_state.

any_decode_state &operator=(const any_decode_state&) = delete
You cannot copy assign an any_decode_state.

any_decode_state(any_decode_state&&) = default
Move constructs an any_decode_state.

any_decode_state &operator=(any_decode_state&&) = default
Move assigns an any_decode_state.

76 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

class any_encode_state
The state for any encoding’s encode state.

Public Functions

inline any_encode_state(const any_encoding_with &__encoding)
Creates a state properly initialized from the stored encoding.

any_encode_state(const any_encode_state&) = delete
You cannot copy construct an any_encode_state.

any_encode_state &operator=(const any_encode_state&) = delete
You cannot copy assign an any_encode_state.

any_encode_state(any_encode_state&&) = default
Move constructs an any_encode_state.

any_encode_state &operator=(any_encode_state&&) = default
Move assigns an any_encode_state.

ASCII

The American Standard Code for Information Interchange (ASCII). A typical 7-bit encoding that is bitwise-compatible
with UTF-8.

constexpr ascii_t ztd::text::ascii = {}
An instance of the ascii_t type for ease of use.

typedef basic_ascii<char> ztd::text::ascii_t
The American Standard Code for Information Exchange (ASCII) Encoding.

Remark The most vanilla and unimaginative encoding there is in the world, excluding tons of other languages,
dialects, and even common English idioms and borrowed words. Please don’t pick this unless you have
good reason!

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_ascii
The American Standard Code for Information Exchange (ASCII) Encoding.

Remark The most vanilla and unimaginative encoding there is in the world, excluding tons of other languages,
dialects, and even common English idioms and borrowed words. Please don’t pick this unless you have
good reason!

tparam _CodeUnit The code unit type to work over.

1.9. API Reference 77

ztd.text, Release 0.0.0

Public Types

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder.

Remark It is an empty struct because there is no shift state to preserve between complete units of encoded
information. It is also only state and not separately decode_state and encode_state because one
type suffices for both.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values.

Remark ASCII can decode from its 7-bit (unpacked) code units to Unicode Code Points. Since the con-
verion is lossless, this property is true.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code unit values. This is not true
for ASCII, as many Unicode Code Point and Unicode Scalar Values cannot be represented in ASCII. Since
the conversion is lossy, this property is false.

Public Static Functions

static inline constexpr ::ztd::span<const code_unit, 1> replacement_code_units() noexcept
A range of code units representing the values to use when a replacement happen. For ASCII, this must be
‘?’ instead of the usual Unicode Replacement Character U’’.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

78 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexprconst::std::size_t max_code_units = 1
The maximum code units a single complete operation of encoding can produce.

static constexprconst::std::size_t max_code_points = 1
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

cuneicode_encoding (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

This encoding is only available if the configuration macro for ZTD_TEXT_USE_CUNEICODE is turned on.

This encoding is tied to the cuneicode library. The cuneicode library is a C library for validation, counting, and
transcoding between a fixed set of encodings, with an additional plug for arbitrary encodings that can be added at run-
time. This is in opposition to iconv, where additional encodings can only be added by-hand through recompiling the
code or hooking specific system configuration points.

cuneicode has a variable number of encodings it can be compiled with to support. States are pre-constructed in the
encoding itself and copied as necessary when encode_state or decode_states are being created to call the desired

1.9. API Reference 79

https://ztdcuneicode.rtfd.io

ztd.text, Release 0.0.0

conversion functions. The user can inspect the output error parameter from the cuneicode_encoding constructor to
know of failure, or not pass in the output error parameter and instead take one of a assert, thrown exception, or abort
(preferred invocation in that order).

Encoding Scheme

The encoding_scheme template turns any encoding into a byte-based encoding capable of reading and writing those
bytes into and out of byte-value_type ranges. It prevents duplicating effort to read encodings as little endian or big
endian, allowing composition for any desired encoding to interface with e.g. a UTF-16 Big Endian blob of data coming
over a network or shared pipe.

Aliases

using ztd::text::basic_utf16_le = encoding_scheme<utf16_t, endian::little, _Byte>
A UTF-16 encoding, in Little Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or uchar.

using ztd::text::utf16_le_t = basic_utf16_le<::std::byte>
A UTF-16 encoding, in Little Endian format, with inputs as a sequence of bytes.

using ztd::text::basic_utf16_be = encoding_scheme<utf16_t, endian::big, _Byte>
A UTF-16 encoding, in Big Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or unsigned
char.

using ztd::text::utf16_be_t = basic_utf16_be<::std::byte>
A UTF-16 encoding, in Big Endian format, with inputs as a sequence of bytes.

using ztd::text::basic_utf16_ne = encoding_scheme<utf16_t, endian::native, _Byte>
A UTF-16 encoding, in Native Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or unsigned
char.

using ztd::text::utf16_ne_t = basic_utf16_ne<::std::byte>
A UTF-16 encoding, in Native Endian format, with inputs as a sequence of bytes.

using ztd::text::basic_utf32_le = encoding_scheme<utf32_t, endian::little, _Byte>
A UTF-32 encoding, in Little Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or unsigned
char .

using ztd::text::utf32_le_t = basic_utf32_le<::std::byte>
A UTF-32 encoding, in Little Endian format, with inputs as a sequence of bytes.

using ztd::text::basic_utf32_be = encoding_scheme<utf32_t, endian::big, _Byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or unsigned
char .

80 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

using ztd::text::utf32_be_t = basic_utf32_be<::std::byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

using ztd::text::basic_utf32_ne = encoding_scheme<utf32_t, endian::native, _Byte>
A UTF-32 encoding, in Native Endian format, with inputs as a sequence of bytes.

Template Parameters _Byte – The byte type to use. Typically, this is std::byte or unsigned
char .

using ztd::text::utf32_ne_t = basic_utf32_ne<::std::byte>
A UTF-32 encoding, in Big Endian format, with inputs as a sequence of bytes.

Base Template

template<typename _Encoding, endian _Endian = endian::native, typename _Byte = ::std::byte>

class ztd::text::encoding_scheme : public __is_unicode_encoding_es<encoding_scheme<_Encoding, _Endian,
_Byte>, remove_cvref_t<unwrap_t<_Encoding>>>, private ebco<_Encoding>

Decomposes the provided Encoding type into a specific endianness (big, little, or native) to allow for a single
encoding type to be viewed in different ways.

Remark For example, this can be used to construct a Big Endian UTF-16 by using
encoding_scheme<ztd::text::utf16_t, ztd::endian::big>. It can be made
interopable with unsigned char buffers rather than std::byte buffers by doing:
ztd::text::encoding_scheme<ztd::text::utf32_t, ztd::endian::native, unsigned
char>.

tparam _Encoding The encoding type.

tparam _Endian The endianess to use. Defaults to ztd::endian::native.

tparam _Byte The byte type to use. Defaults to std::byte.

Public Types

using encoding_type = _Encoding
The encoding type that this scheme wraps.

using code_point = code_point_t<_UBaseEncoding>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using code_unit = _Byte
The individual units that result from an encode operation or are used as input to a decode operation.

Remark Typically, this type is usually always some kind of byte type (unsigned char or std::byte or other
sizeof(obj) == 1 type).

using decode_state = decode_state_t<_UBaseEncoding>
The state that can be used between calls to the decode function.

1.9. API Reference 81

ztd.text, Release 0.0.0

Remark Even if the underlying encoding only has a single state type, we need to separate the two out
in order to generically handle all encodings. Therefore, the encoding_scheme will always have both
encode_state and decode_state.

using encode_state = encode_state_t<_UBaseEncoding>
The state that can be used between calls to the encode function.

Remark Even if the underlying encoding only has a single state type, we need to separate the two out
in order to generically handle all encodings. Therefore, the encoding_scheme will always have both
encode_state and decode_state.

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<_UBaseEncoding>>
Whether or not the encode operation can process all forms of input into code point values.

Remark Defers to what the underlying encoding_type does.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<_UBaseEncoding>>
Whether or not the decode operation can process all forms of input into code point values.

Remark Defers to what the underlying encoding_type does.

Public Functions

inline constexpr encoding_type &base() & noexcept
Retrives the underlying encoding object.

Returns An l-value reference to the encoding object.

inline constexpr const encoding_type &base() const & noexcept
Retrives the underlying encoding object.

Returns An l-value reference to the encoding object.

inline constexpr encoding_type &&base() && noexcept
Retrives the underlying encoding object.

Returns An l-value reference to the encoding object.

template<typename _Unused = encoding_type, ::std::enable_if_t<is_code_units_replaceable_v<_Unused>>*
= nullptr>
inline decltype(auto) constexpr replacement_code_units() const noexcept

Returns, the desired replacement code units to use.

Remark This is only callable if the function call exists on the wrapped encoding. It is broken down into a
contiguous view type formulated from bytes if the wrapped code unit types do not match.

template<typename _Unused = encoding_type, ::std::enable_if_t<is_code_points_replaceable_v<_Unused>>*
= nullptr>
inline decltype(auto) constexpr replacement_code_points() const noexcept

Returns the desired replacement code points to use.

82 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark Is only callable if the function call exists on the wrapped encoding.

template<typename _Unused = encoding_type,
::std::enable_if_t<is_code_units_maybe_replaceable_v<_Unused>>* = nullptr>
inline decltype(auto) constexpr maybe_replacement_code_units() const noexcept

Returns the desired replacement code units to use, or an empty optional-like type if there is nothing present.

Remark This is only callable if the function call exists on the wrapped encoding. It is broken down into a
contiguous view type formulated from bytes if the wrapped code unit types do not match.

template<typename _Unused = encoding_type,
::std::enable_if_t<is_code_points_maybe_replaceable_v<_Unused>>* = nullptr>
inline decltype(auto) constexpr maybe_replacement_code_points() const noexcept

Returns the desired replacement code units to use.

Remark This Is only callable if the function call exists on the wrapped encoding.

inline constexpr bool contains_unicode_encoding() const noexcept
Whether or not this encoding is some form of Unicode encoding.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output, _ErrorHandler

&&__error_handler, decode_state &__s) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output, _ErrorHandler

&&__error_handler, encode_state &__s) const
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

1.9. API Reference 83

ztd.text, Release 0.0.0

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexprconst::std::size_t max_code_points = max_code_points_v<_UBaseEncoding>
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexprconst::std::size_t max_code_units = (max_code_units_v<_UBaseEncoding> *
sizeof(_BaseCodeUnit)) / (sizeof(_Byte))

The maximum code units a single complete operation of encoding can produce.

Execution

This is the locale-based, runtime encoding. It uses a number of compile-time and runtime heuristics to eventually be
resolved to an implementation-defined encoding. It is not required to work in constant expressions either: for this, use
ztd::text::literal, which represents the compile-time string (e.g. "my string") encoding.

Currently, the hierachy of behaviors is like so:

• If the platform is MacOS, then it assumes this is UTF-8;

• Otherwise, if libiconv is available, then it attempts to use iconv configured to the "char"-identified encoding;

• Otherwise, if the headers <cuchar> or <uchar.h> are available, then it attempts to use a gnarly, lossy, and
dangerous encoding that potentially traffics through the C Standard Library and Locale APIs;

• Otherwise, it produces a compile-time error.

Warning: The C Standard Library has many design defects in its production of code points, which may make it
unsuitable even if your C Standard Library recognizes certain locales (e.g., Big5-HKSCS). The runtime will always
attempt to load iconv if the definition is turned on, since it may do a better job than the C Standard Library’s
interfaces until C23.

Even if, on a given platform, it can be assumed to be a static encoding (e.g., Apple/MacOS where it al-
ways returns the “C” Locale but processes text as UTF-8), ztd::text::execution will always present it-
self as a runtime and unknowable encoding. This is to prevent portability issues from relying on, e.g.,
ztd::text::is_decode_injective_v<ztd::text::execution> being true during development and working
with that assumption, only to have it break when ported to a platform where that assumption no longer holds.

84 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr execution_t ztd::text::execution = {}
An instance of the execution_t type for ease of use.

typedef no_encoding<char, unicode_code_point> ztd::text::execution_t
The Encoding that represents the “Execution” (narrow locale-based) encoding. The encoding is typically asso-
ciated with the locale, which is tied to the C standard library’s setlocale function.

Remark Use of this type is subject to the C Standard Library or platform defaults. Some locales (such as
the Big5 Hong King Supplementary Character Set (Big5-HKSCS)) are broken when accessed without
ZTD_TEXT_USE_CUNEICODE beingdefined, due to fundamental design issues in the C Standard Library
and bugs in glibc/musl libc’s current locale encoding support. On Apple, this is cuurrently assumed to be
UTF-8 since they do not support the <cuchar> or <uchar.h> headers.

Internal Types

Warning: Names with double underscores, and within the __detail and __impl namespaces are reserved for
the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any point
in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

MacOS-based

class ztd::text::__txt_impl::__execution_mac_os : private __utf8_with<__execution_mac_os, char,
char32_t>

The default (“locale”) encoding for Mac OS.

Remark Note that for all intents and purposes, Mac OS demands that all text is in UTF-8. However, on Big
Sur, Catalina, and a few other platforms locale functionality and data has been either forgotten/left behind
or intentionally kept in place on these devices. It may be possible that with very dedicated hacks one can
still change the desired default encoding from UTF-8 to something else in the majority of Apple text. Their
documentation states that all text “should” be UTF-8, but very explicitly goes out of its way to not make
that hard guarantee. Since it is a BSD-like system and they left plenty of that data behind from C libraries,
this may break in extremely obscure cases. Please be careful on Apple machines!

Public Types

using code_point = code_point_t<__base_t>
The code point type that is decoded to, and encoded from. ///.

using code_unit = code_unit_t<__base_t>
The code unit type that is decoded from, and encoded to. ///.

using decode_state = decode_state_t<__base_t>
The associated state for decode operations. ///.

using encode_state = encode_state_t<__base_t>
The associated state for encode operations. ///.

1.9. API Reference 85

ztd.text, Release 0.0.0

using is_unicode_encoding = ::std::integral_constant<bool, is_unicode_encoding_v<__base_t>>
Whether or not this encoding is a unicode encoding or not. ///.

using is_decode_injective = ::std::false_type
Whether or not this encoding’s decode_one step is injective or not. ///.

using is_encode_injective = ::std::false_type
Whether or not this encoding’s encode_one step is injective or not. ///.

Public Static Functions

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, encode_state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

86 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Static Attributes

static constexpr ::std::size_t max_code_points = 8
The maximum code units a single complete operation of encoding can produce.

Remark There are encodings for which one input can produce 3 code points (some Tamil encodings) and
there are rumours of an encoding that can produce 7 code points from a handful of input. We use a
protective/conservative 8, here, to make sure ABI isn’t broken later.

static constexpr ::std::size_t max_code_units = MB_LEN_MAX
The maximum number of code points a single complete operation of decoding can produce.

Remark This is bounded by the platform’s MB_LEN_MAX macro, which is an integral constant expression
representing the maximum value of output all C locales can produce from a single complete operation.

Private Static Functions

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

1.9. API Reference 87

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

iconv_encoding (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

This encoding is only available if the configuration macro for ZTD_TEXT_USE_ICONV is turned on.

This encoding is tied to the iconv library. It will attempt to bootstrap iconv on first use of the encoding through use of
GetProcAddress/dlsym and friends. If it cannot find it will either assert, abort, or loudly annoy the user in some way.
The code is retrieved dynamically, as iconv is under a LGPL/GPL licensed and cannot be traditionally built / statically
linked with application code (though in the future we may provide a way for software to do that if the software being
made with this library is also GPL-compatible software).

iconv has a fixed set of encodings it can be compiled with to support. States are pre-constructed in the encoding itself
and copied as necessary when encode_state or decode_states are being created to call the iconv functions. The
user can inspect the output error parameter from the iconv_encoding constructor to know of failure, or not pass in
the output error parameter and instead take one of a assert, thrown exception, or abort (preferred invocation in that
order).

Literal

The literal encoding handles C and C++ string literals ("") used at compile time and stored in the binary. The
library uses a number of heuristics to determine with any degree of certainty what the encoding of string literals are,
but in some cases it is not explicitly possible to achieve this goal.

If the library cannot figure out the literal encoding, the code will typically error with a static_assert, loudly, that it
cannot use the functions on the type when you attempt to do anything with them because it may mangle whatever input
or output you are expecting.

If you know the encoding of literals for your project (you provide the command line switch, or similar), then you can
define a configuration macro named ZTD_CXX_COMPILE_TIME_ENCODING_NAME to be a string literal of your
type, such as "UTF-8" or "ISO-8859-1".

If the library does not recognize the encoding and cannot transcode it properly, it will also loudly warn you that it does
not understand the encoding of the literal (in which case, file an issue about it and we will add it to the list of acceptable
literal encodings).

If you like to live dangerously and do not care for the warnings, you can define a configuration macro named
ZTD_TEXT_YES_PLEASE_DESTROY_MY_LITERALS_UTTERLY_I_MEAN_IT and it will just blindly go with what-
ever weird default it ended up deciding on.

(This is usually a catastrophically terrible idea, but let is not be said that we didn’t give you the power to do great things,
even if it cost you your foot.)

88 Chapter 1. Who Is This Library For?

https://www.gnu.org/software/libiconv/

ztd.text, Release 0.0.0

constexpr literal_t ztd::text::literal = {}
An instance of the literal_t type for ease of use.

class ztd::text::literal_t : private ebco<__txt_detail::__literal>
The encoding of string literal_ts (e.g. "") at compile time.

Public Types

using is_unicode_encoding = ::std::integral_constant<bool,
__idk_detail::__is_unicode_encoding_id(__txt_detail::__literal_id)>

Whether or not this literal_t encoding is a Unicode Transformation Format, such as UTF-8, UTF-EBCDIC,
or GB18030.

using code_unit = code_unit_t<__underlying_t>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = code_point_t<__underlying_t>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using encode_state = encode_state_t<__underlying_t>
The state that can be used between calls to encode_one.

using decode_state = decode_state_t<__underlying_t>
The state that can be used between calls to decode_one.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<__underlying_t>>
Whether or not the decode operation can process all forms of input into code point values.

Remark The decode step should always be injective because every encoding used for literal_ts in C++
needs to be capable of being represented by UCNs. Whether or not a platform is a jerk, who knows?

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<__underlying_t>>
Whether or not the encode operation can process all forms of input into code unit values.

Remark This is absolutely not guaranteed to be the case, and as such we must check the provided encoding
name for us to be sure.

Public Functions

constexpr literal_t() noexcept = default
Default constructs a ztd::text::literal.

constexpr literal_t(const literal_t&) noexcept = default
Copy constructs a ztd::text::literal.

constexpr literal_t(literal_t&&) noexcept = default
Move constructs a ztd::text::literal.

1.9. API Reference 89

ztd.text, Release 0.0.0

constexpr literal_t &operator=(const literal_t&) noexcept = default
Copy assigns into a ztd::text::literal_t object.

constexpr literal_t &operator=(literal_t&&) noexcept = default
Move assigns into a ztd::text::literal_t object.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__state) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__state) const
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

90 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Static Attributes

static constexpr ::std::size_t max_code_points = 16
The maximum number of code points a single complete operation of decoding can produce.

static constexpr ::std::size_t max_code_units = 32
The maximum code units a single complete operation of encoding can produce.

Modified UTF-8

Modified Unicode Transformation Format 8 (MUTF-8) is a UTF-8 format employed by some Android components and
other ecosystems. It’s special property is that it encodes the NULL character in C-style strings ('\0') as an overlong
sequence. This is normally illegal in UTF-8, but allowed here to allow easier interoperation with these systems.

constexpr mutf8_t ztd::text::mutf8 = {}
An instance of the MUTF-8 type for ease of use.

using ztd::text::mutf8_t = basic_mutf8<uchar8_t>
A Modified UTF-8 Encoding that traffics in char8_t. See ztd::text::basic_mutf8 for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_mutf8 : public __utf8_with<basic_mutf8<_CodeUnit, _CodePoint>, _CodeUnit,
_CodePoint, __txt_detail::__empty_state, __txt_detail::__empty_state, true, false, true>

A Modified UTF-8 Encoding that traffics in, specifically, the desired code unit type provided as a template
argument.

Remark This type as a maximum of 6 input code points and a maximum of 1 output code point. Null values
are encoded as an overlong sequence to specifically avoid problems with C-style strings, which is useful for
working with bad implementations sitting on top of POSIX or other Operating System APIs. For a strict,
Unicode-compliant UTF-8 Encoding, see ztd::text::basic_utf8 .

tparam _CodeUnit The code unit type to use.

tparam _CodePoint The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

1.9. API Reference 91

ztd.text, Release 0.0.0

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

92 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

UTF-16

constexpr utf16_t ztd::text::utf16 = {}
An instance of the UTF-16 encoding for ease of use.

typedef basic_utf16<char16_t, unicode_code_point> ztd::text::utf16_t
A UTF-16 Encoding that traffics in char16_t. See ztd::text::basic_utf16 for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_utf16 : public __utf16_with<basic_utf16<_CodeUnit, _CodePoint>, _CodeUnit,
_CodePoint>

A UTF-16 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark This is a strict UTF-16 implementation that does not allow lone, unpaired surrogates either in or out.

tparam _CodeUnit The code unit type to use.

tparam _CodePoint The code point type to use.

1.9. API Reference 93

ztd.text, Release 0.0.0

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is an empty struct because there is
no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-16 formats, this is usually char16_t, but this can change (see ztd::text::basic_utf16).

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

94 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce.

UTF-32

constexpr utf32_t ztd::text::utf32 = {}
An instance of the UTF-32 encoding for ease of use.

typedef basic_utf32<char32_t, unicode_code_point> ztd::text::utf32_t
A UTF-32 Encoding that traffics in char32_t. See ztd::text::basic_utf32 for more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_utf32 : public __utf32_with<basic_utf32<_CodeUnit, _CodePoint>, _CodeUnit,
_CodePoint>

A UTF-32 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark This is a strict UTF-32 implementation that does not allow lone, unpaired surrogates either in or out.

1.9. API Reference 95

ztd.text, Release 0.0.0

tparam _CodeUnit The code unit type to use.

tparam _CodeUnit The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is an empty struct because there is
no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-32 formats, this is usually char32_t, but this can change (see ztd::text::basic_utf32).

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

96 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce.

UTF-8

Unicode Transformation Format 8 (UTF-8) is an encoding for text that traffics code units 8-bits at a time. It is ubiquitous
amongst web and other shared protocols and the preferred storage format for non-legacy environments and operations.
It is preferred that all text is placed in UTF-8 format when working internally in your application, unless you have some
special reason (e.g., interoperation with JavaScript or Qt).

constexpr utf8_t ztd::text::utf8 = {}
An instance of the UTF-8 encoding for ease of use.

typedef basic_utf8<uchar8_t, unicode_code_point> ztd::text::utf8_t
A UTF-8 Encoding that traffics in uchar8_t. See ztd::text::basic_utf8 for more details.

1.9. API Reference 97

ztd.text, Release 0.0.0

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_utf8 : public __utf8_with<basic_utf8<_CodeUnit, _CodePoint>, _CodeUnit,
_CodePoint>

A UTF-8 Encoding that traffics in, specifically, the desired code unit type provided as a template argument.

Remark This type as a maximum of 4 input code points and a maximum of 1 output code point. It strictly follows
the Unicode Specification for allowed conversions. For overlong sequences (e.g., similar to Android or Java
UTF-8 implementations) and other quirks, see ztd::text::basic_mutf8 or ztd::text::basic_wtf8 .

tparam _CodeUnit The code unit type to use.

tparam _CodePoint The code point type to use.

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

98 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Static Functions

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

1.9. API Reference 99

ztd.text, Release 0.0.0

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

Wide Execution

This is the locale-based, wide runtime encoding. It uses a number of compile-time and runtime heuristics to eventually
be resolved to an implementation-defined encoding. It is not required to work in constant expressions either: for this,
use ztd::text::wide_literal, which represents the compile-time wide string (e.g. L"my string") encoding.

Currently, the hierachy of behaviors is like so:

• If the platform is Windows, then it assumes this is UTF-16;

• Otherwise, if libiconv is available, then it attempts to use iconv configured to the "wchar_t"-identified encoding;

• Otherwise, if the platform is MacOS and WCHAR_MAX is greater than the maximum of an unsigned 21-bit number,
or __STDC_ISO_10646__ is defined, then it attempts to use UTF-32;

• Otherwise, if the headers <cwchar> or <wchar.h> are available, then it attempts to use a gnarly, lossy, and
dangerous encoding that potentially traffics through the C Standard Library and Locale APIs in conjunction with
a roundtrip through the ztd::text::execution encoding;

• Otherwise, it produces a compile-time error.

Warning: The C Standard Library has many design defects in its production of code points, which may make it
unsuitable even if your C Standard Library recognizes certain locales (e.g., Big5-HKSCS). The runtime will always
attempt to load iconv if the definition is turned on, since it may do a better job than the C Standard Library’s
interfaces until C23.

Even if, on a given platform, it can be assumed to be a static encoding (e.g., Apple/MacOS where it al-
ways returns the “C” Locale but processes text as UTF-32), ztd::text::wide_execution will always present
itself as a runtime and unknowable encoding. This is to prevent portability issues from relying on, e.g.,
ztd::text::is_decode_injective_v<ztd::text::wide_execution> being true during development and
working with that assumption, only to have it break when ported to a platform where that assumption no longer holds.

constexpr wide_execution_t ztd::text::wide_execution = {}
An instance of the wide_execution_t type for ease of use.

typedef __txt_impl::__wide_execution_cwchar ztd::text::wide_execution_t
The Encoding that represents the “Wide Execution” (wide locale-based) encoding. The wide execution encoding
is typically associated with the locale, which is tied to the C standard library’s setlocale function.

Remark Windows uses UTF-16, unless you call the C Standard Library directly. If ZTD_TEXT_USE_CUNEICODE
or ZTD_TEXT_ICONV are not defined, this object may use the C Standard Library to perform transcoding if
certain platform facilities are disabled or not available. If this is the case, the C Standard Library has funda-
mental limitations which may treat your UTF-16 data like UCS-2, and result in broken input/output. This

100 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

object uses UTF-16 directly on Windows when possible to avoid some of the platform-specific shenanigans.
It will attempt to do UTF-32 conversions where possible as well, relying on C Standard definitions.

Internal Type

Warning: Names with double underscores, and within the __detail and __impl namespaces are reserved for
the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any point
in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

<cwchar>-based

class ztd::text::__txt_impl::__wide_execution_cwchar
The Encoding that represents the “Wide Execution” (wide locale-based) encoding. This iteration uses the C
Standard Library to do its job.

Remark Because this encoding uses the C Standard Library’s functions, it is both slower and effectively dan-
gerous because it requires a roundtrip through the encoding to get to UTF-32, and vice-versa. This is only
used when wchar_t and its locale-based runtime encoding cannot be determined to be UTF-32, UTF-16,
or some other statically-known encoding. These conversions may also be lossy.

Public Types

using code_unit = wchar_t
The individual units that result from an encode operation or are used as input to a decode operation.

Remark Please note that wchar_t is a variably sized type across platforms and may not represent either
UTF-16 or UTF-32, including on *nix or POSIX platforms.

using code_point = unicode_code_point
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using decode_state = __wide_decode_state
The state of the wide encoding used between calls, which may potentially manage shift state.

Remark This type can potentially have lots of state due to the way the C API is specified.

using encode_state = __wide_encode_state
The state of the wide encoding used between calls, which may potentially manage shift state.

Remark This type can potentially have lots of state due to the way the C API is specified.

using is_decode_injective = ::std::false_type
Whether or not the decode operation can process all forms of input into code point values.

1.9. API Reference 101

ztd.text, Release 0.0.0

Remark All known wide encodings can decode into Unicode just fine.

using is_encode_injective = ::std::false_type
Whether or not the encode operation can process all forms of input into code unit values. On Windows, this
is guaranteed to be UTF-16 encoding for the platform. Normally, this is UTF-32 on *nix/POSIX machines,
but it can (and has been) changed before, sometimes even at runtime.

Remark IBM encodings/computers make life interesting. . .

using is_unicode_encoding = ::std::false_type
Whether or not this encoding a Unicode encoding of some type.

Remark On Windows, this is always true. On other platforms, the guarantees are not quite there. IBM
encodings/computers make life interesting. . .

Public Static Functions

static inline bool contains_unicode_encoding() noexcept
Returns whether or not this encoding is a unicode encoding.

Remark This function operates at runtime and queries the existing locale through a variety of platform-
specific means (such as nl_langinfo for POSIX, ACP probing on Windows, or fallin back to
std::setlocale name checking otherwise).

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline auto encode_one(_InputRange &&__input, _OutputRange &&__output, _ErrorHandler

&&__error_handler, encode_state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark Platform APIs and/or the C Standard Library may be used to properly decode one complete unit
of information (alongside std::mbstate_t usage). Whether or not the state is used is based on the im-
plementation and what it chooses. If ZTD_TEXT_USE_CUNEICODE is defined, the ztd.cuneicode
library may be used to fulfill this functionality.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

102 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline auto decode_one(_InputRange &&__input, _OutputRange &&__output, _ErrorHandler

&&__error_handler, decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark Platform APIs and/or the C Standard Library may be used to properly decode one complete unit
of information (alongside std::mbstate_t usage). Whether or not the state is used is based on the imple-
mentation and what it chooses. If ZTD_TEXT_USE_CUNEICODE is defined, the ztd.cuneicode library
may be used to fulfill this functionality.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexprconst::std::size_t max_code_units = 8
The maximum code units a single complete operation of encoding can produce.

static constexprconst::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

1.9. API Reference 103

ztd.text, Release 0.0.0

MacOS-based

class ztd::text::__txt_impl::__wide_execution_iso10646 : private
__utf32_with<__wide_execution_iso10646, wchar_t, char32_t>

The wide encoding, as envisioned by ISO 10646. Typically UTF-32 with native endianness.

Remark This is generally only turned on when the Standard Definition is turn oned (). It effectively uses UTF-
32 since that’s the only encoding that can meet the original requirement of the C Standard and C Standard
Library with respect to what happens with individual wchar_t objects.

Public Types

using code_point = code_point_t<__base_t>
The code point type that is decoded to, and encoded from.

using code_unit = code_unit_t<__base_t>
The code unit type that is decoded from, and encoded to.

using decode_state = decode_state_t<__base_t>
The associated state for decode operations.

using encode_state = encode_state_t<__base_t>
The associated state for encode operations.

using is_unicode_encoding = ::std::integral_constant<bool, is_unicode_encoding_v<__base_t>>
Whether or not this encoding is a unicode encoding or not.

using is_decode_injective = ::std::false_type
Whether or not this encoding’s decode_one step is injective or not.

using is_encode_injective = ::std::false_type
Whether or not this encoding’s encode_one step is injective or not.

Public Static Functions

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, decode_state &__s)
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

104 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _InputRange, typename _OutputRange, typename _ErrorHandler>
static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,

_ErrorHandler &&__error_handler, encode_state &__s)
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. Most encodings have no state, but because
this is effectively a runtime encoding and therefore it is important to preserve and manage
this state.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexprconst::std::size_t max_code_units = 8
The maximum code units a single complete operation of encoding can produce.

static constexprconst::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

Private Types

using state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is an empty struct because there is
no shift state to preserve between complete units of encoded information.

Private Static Functions

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

1.9. API Reference 105

ztd.text, Release 0.0.0

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Wide Literal

The wide_literal encoding handles C and C++ wide string literals (L"") used at compile time and stored in the
binary. The library uses a number of heuristics to determine with any degree of certainty what the encoding of string
literals are, but in some cases it is not explicitly possible to achieve this goal.

If the library cannot figure out the wide literal encoding, the code will typically error with a static_assert, loudly,
that it cannot use the functions on the type when you attempt to do anything with them because it may mangle whatever
input or output you are expecting.

If you know the encoding of wide literals for your project (you provide the command line switch, or similar), then
you can define a configuration macro named ZTD_CXX_COMPILE_TIME_WIDE_ENCODING_NAME to be a string
literal of your type, such as "UTF-16" or "EUC-TW".

If the library does not recognize the encoding and cannot transcode it properly, it will also loudly warn you that it does
not understand the encoding of the literal (in which case, file an issue about it and we will add it to the list of acceptable
wide literal encodings).

106 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

If you like to live dangerously and do not care for the warnings, you can define a configuration macro named
ZTD_TEXT_YES_PLEASE_DESTROY_MY_WIDE_LITERALS_UTTERLY_I_MEAN_IT and it will just blindly go
with whatever weird default it ended up deciding on.

(This is usually a catastrophically terrible idea, but let is not be said that we didn’t give you the power to do great things,
even if it cost you your foot.)

constexpr wide_literal_t ztd::text::wide_literal = {}
An instance of the wide_literal_t type for ease of use.

class ztd::text::wide_literal_t : private ebco<__txt_detail::__wide_literal, 0>
The encoding of wide string literal_ts (e.g. "") at compile time.

Public Types

using is_unicode_encoding = ::std::integral_constant<bool,
__idk_detail::__is_unicode_encoding_id(__txt_detail::__wide_literal_id)>

Whether or not this wide_literal_t encoding is a Unicode Transformation Format, such as UTF-GB18030,
UTF-16, or UTF-32.

using code_unit = code_unit_t<__underlying_t>
The individual units that result from an encode operation or are used as input to a decode operation.

using code_point = code_point_t<__underlying_t>
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using encode_state = encode_state_t<__underlying_t>
The state that can be used between calls to encode_one.

using decode_state = decode_state_t<__underlying_t>
The state that can be used between calls to decode_one.

using is_decode_injective = ::std::integral_constant<bool, is_decode_injective_v<__underlying_t>>
Whether or not the decode operation can process all forms of input into code point values.

Remark The decode step is always injective because every encoding used for literal_ts in C++ needs to be
capable of being represented by UCNs.

using is_encode_injective = ::std::integral_constant<bool, is_encode_injective_v<__underlying_t>>
Whether or not the encode operation can process all forms of input into code unit values.

Remark This is absolutely not guaranteed to be the case, and as such we must check the provided encoding
name for wide to be sure.

1.9. API Reference 107

ztd.text, Release 0.0.0

Public Functions

constexpr wide_literal_t() noexcept = default
Default constructs a ztd::text::wide_literal.

constexpr wide_literal_t(const wide_literal_t&) noexcept = default
Copy constructs a ztd::text::wide_literal.

constexpr wide_literal_t(wide_literal_t&&) noexcept = default
Move constructs a ztd::text::wide_literal.

constexpr wide_literal_t &operator=(const wide_literal_t&) noexcept = default
Copy assigns into a ztd::text::wide_literal_t object.

constexpr wide_literal_t &operator=(wide_literal_t&&) noexcept = default
Move assigns into a ztd::text::wide_literal_t object.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto decode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, decode_state &__state) const
Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

template<typename _Input, typename _Output, typename _ErrorHandler>
inline constexpr auto encode_one(_Input &&__input, _Output &&__output, _ErrorHandler

&&__error_handler, encode_state &__state) const
Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

108 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __error_handler – [in] The error handler to invoke if encoding fails.

• __state – [inout] The necessary state information. For this encoding, the state is empty
and means very little.

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points = 8
The maximum number of code points a single complete operation of decoding can produce.

static constexpr ::std::size_t max_code_units = 16
The maximum code units a single complete operation of encoding can produce.

WTF-8

Wobby Transformat Format 8 (WTF-8) is an encoding scheme that preserves lone-encoded surrogates, which is gen-
erally not allowed in streams composed purely of Unicode Scalar Values.

constexpr wtf8_t ztd::text::wtf8 = {}
An instance of the WTF-8 type for ease of use.

using ztd::text::wtf8_t = basic_wtf8<uchar8_t>
A “Wobbly Transformation Format 8” (WTF-8) Encoding that traffics in char8_t. See ztd::text::basic_wtf8 for
more details.

Base Template

template<typename _CodeUnit, typename _CodePoint = unicode_code_point>

class ztd::text::basic_wtf8 : public __utf8_with<basic_wtf8<_CodeUnit, _CodePoint>, _CodeUnit,
_CodePoint, __txt_detail::__empty_state, __txt_detail::__empty_state, false, true, false>

A “Wobbly Transformation Format 8” (WTF-8) Encoding that traffics in, specifically, the desired code unit type
provided as a template argument.

Remark This type as a maximum of 4 input code points and a maximum of 1 output code point. Unpaired
surrogates are allowed in this type, which may be useful for dealing with legacy storage and implementations
of the Windows Filesystem (modern Windows no longer lets non-Unicode filenames through). For a strict,
Unicode-compliant UTF-8 Encoding, see ztd::text::basic_utf8 .

tparam _CodeUnit The code unit type to use.

tparam _CodePoint The code point type to use.

1.9. API Reference 109

ztd.text, Release 0.0.0

Public Types

using is_unicode_encoding = ::std::true_type
Whether or not this encoding that can encode all of Unicode.

using decode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using encode_state = __txt_detail::__empty_state
The state that can be used between calls to the encoder and decoder. It is normally an empty struct because
there is no shift state to preserve between complete units of encoded information.

using code_unit = _CodeUnit
The individual units that result from an encode operation or are used as input to a decode operation. For
UTF-8 formats, this is usually char8_t, but this can change (see ztd::text::basic_utf8).

using code_point = _CodePoint
The individual units that result from a decode operation or as used as input to an encode operation. For
most encodings, this is going to be a Unicode Code Point or a Unicode Scalar Value.

using is_decode_injective = ::std::true_type
Whether or not the decode operation can process all forms of input into code point values. Thsi is true for
all Unicode Transformation Formats (UTFs), which can encode and decode without a loss of information
from a valid collection of code units.

using is_encode_injective = ::std::true_type
Whether or not the encode operation can process all forms of input into code unit values. This is true for all
Unicode Transformation Formats (UTFs), which can encode and decode without loss of information from
a valid input code point.

Public Static Functions

static inline constexpr auto encode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, encode_state &__s)

Encodes a single complete unit of information as code units and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code points from.

• __output – [in] The output view to write code units into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

110 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns A ztd::text::encode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

static inline constexpr auto decode_one(_InputRange &&__input, _OutputRange &&__output,
_ErrorHandler &&__error_handler, decode_state &__s)

Decodes a single complete unit of information as code points and produces a result with the input and output
ranges moved past what was successfully read and written; or, produces an error and returns the input and
output ranges untouched.

Remark To the best ability of the implementation, the iterators will be returned untouched (e.g., the input
models at least a view and a forward_range). If it is not possible, returned ranges may be incremented
even if an error occurs due to the semantics of any view that models an input_range.

Parameters

• __input – [in] The input view to read code uunits from.

• __output – [in] The output view to write code points into.

• __error_handler – [in] The error handler to invoke if encoding fails.

• __s – [inout] The necessary state information. For this encoding, the state is empty and
means very little.

Returns A ztd::text::decode_result object that contains the reconstructed input range, recon-
structed output range, error handler, and a reference to the passed-in state.

Public Static Attributes

static constexpr ::std::size_t max_code_points
The maximum number of code points a single complete operation of decoding can produce. This is 1 for
all Unicode Transformation Format (UTF) encodings.

static constexpr ::std::size_t max_code_units
The maximum code units a single complete operation of encoding can produce. If overlong sequence
allowed, this is 6: otherwise, this is 4.

1.9.4 Error Handlers

assume_valid_handler

The assume_valid_handler is a Undefined-Behavior invoking error handler. If an error is encountered, the encoding
can legally ignore and never, ever call the error handler at all. This can invoke Undefined Behavior on malformed input.

Warning: This should only ever be used on the most trusted of input, ever, and that input should never come
from a source that is a user or connected to ANY external input sources such as the Network, Shared Pipe,
Inter-Procedural Call, or similar.

Implementers of encodings within templates can check for a potentially ignorable error handler like this one using
ztd::text::is_ignorable_error_handler_v.

1.9. API Reference 111

ztd.text, Release 0.0.0

constexpr assume_valid_handler_t ztd::text::assume_valid_handler = {}
An instance of the assume_valid_handler_t type for ease of use.

class ztd::text::assume_valid_handler_t
An error handler that tells an encoding that it will pass through any errors, without doing any adjustment, cor-
rection or checking.

Remark This error handler is useful in conjunction with a ztd::text::ranges::unbounded_view for the fastest
possible encoding and decoding in a general sense. However: IT IS ALSO EXTREMELY DANGEROUS
AND CAN INVOKE UNDEFINED BEHAVIOR IF YOUR TEXT IS, IN FACT, MESSED UP. PLEASE
DO NOT USE THIS WITHOUT A GOOD REASON!

Public Types

using assume_valid = ::std::integral_constant<bool, false>
A type that is true when calling code can not call this function and ignore it, and false when it cannot ignore
it. See ztd::text::assume_valid_handler_t for details.

Public Functions

template<typename _Encoding, typename _Result, typename _InputProgress, typename
_OutputProgress>
inline constexpr auto operator()(const _Encoding&, _Result __result, const _InputProgress&, const

_OutputProgress&) const
A handler for either decode or encode results that simply passes the result type back through with no changes
made.

Parameters __result – [in] The current state of the encode operation to pass through.

default_handler

The default handler for all operations. A class type that simply wraps ztd::text::replacement_handler_t
unless configured otherwise. You can change it to throw by default (NOT recommended) by using
ZTD_TEXT_DEFAULT_HANDLER_THROWS.

Using this type, implicitly or explicitly, signals to ztd.text that you would like it to gently admonish you if any
part of a conversion could be potentially lossy (valid data is put in, but it cannot be handled by the desired en-
code/decode/transcode operation).

constexpr default_handler_t ztd::text::default_handler = {}
An instance of the default_handler_t type for ease of use.

class ztd::text::default_handler_t : private replacement_handler_t
The default error handler for the entire library. Can be configured to use different strategies at build time. Without
configuration, it defaults to the ztd::text::replacement_handler_t.

112 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Types

using error_handler = __error_handler_base_t
The underlying error handler type.

Private Functions

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, encode_result<_InputRange,

_OutputRange, _State> __result, const _InputProgress&, const
_OutputProgress&) const noexcept

The function call for inserting replacement code units at the point of failure, before returning flow back to
the caller of the encode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, decode_result<_InputRange,

_OutputRange, _State> __result, const _InputProgress&, const
_OutputProgress&) const noexcept

The function call for inserting replacement code points at the point of failure, before returning flow back
to the caller of the decode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

incomplete_handler

This error handler takes the ztd::text::encoding_error::incomplete_sequence error and uses it to read from
the provided “progress” contiguous range provided as the third parameter to any error handler. This can be helpful
in situations here incomplete input is not to be interpreted as an error, such as in situations with networking stacks,
I/O reads (particularly, non-recoverable streams like std::istream_iterators or std::ostream_iterators), and
other such storage cases.

The data read but not used from an incomplete error during encode and decode operations is stored in the
incomplete_handler object and can be accessed VIA the code_points and code_units functions.

template<typename _Encoding, typename _ErrorHandler = default_handler_t>

class ztd::text::incomplete_handler : private ebco<_ErrorHandler>
This handler detects if the error code is an incomplete seqence, and sets the error code to being okay before
returning.

Remark This type is often useful in conjunction with an accumulation state or buffer, which can be very handy
for I/O (e.g., Networking) operations.

1.9. API Reference 113

ztd.text, Release 0.0.0

tparam _Encoding The encoding type which dictates the code_unit and code_point buffers to
store in the handler to catch unused input from the last parameter of error handler invocations by
the encoding.

tparam _ErrorHandler An error handler to invoke if the encoding error code is NOT an incomplete
sequence.

Public Types

using error_handler = _ErrorHandler
The underlying error handler type.

Public Functions

inline constexpr incomplete_handler()
noexcept(::std::is_nothrow_default_constructible_v<__error_handler_base_t>)

Constructs a ztd::text::incomplete_handler with a default-constructed internal error handler.

inline constexpr incomplete_handler(const _ErrorHandler &__error_handler)
noexcept(::std::is_nothrow_constructible_v<__error_handler_base_t,
const _ErrorHandler&>)

Constructs a ztd::text::incomplete_handler with the provided internal error handler object.

Parameters __error_handler – The provided error handler object to copy in and use when
the error is not an incomplete error.

inline constexpr incomplete_handler(_ErrorHandler &&__error_handler)
noexcept(::std::is_nothrow_constructible_v<__error_handler_base_t,
_ErrorHandler&&>)

Constructs a ztd::text::incomplete_handler with the provided internal error handler object.

Parameters __error_handler – The provided error handler object to move in and use when
the error is not an incomplete error.

inline constexpr _ErrorHandler &base() & noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

inline constexpr const _ErrorHandler &base() const & noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

inline constexpr _ErrorHandler &&base() && noexcept
Returns the base error handler that is called when a non-incomplete error occurs.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) const &
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

114 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) &
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

template<typename _Result, typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, _Result __result, const _InputProgress

&__input_progress, const _OutputProgress &__output_progress) &&
noexcept(::std::is_nothrow_invocable_v<_ErrorHandler, const
_Encoding&, _Result&&, const _InputProgress&, const
_OutputProgress&>)

Checks if the __result.error_code is ztd::text::encoding_error::incomplete_sequence, it saves the values
from __progress and returns. Otherwise, invokes the provided error handler this object was constructed
with.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

• __input_progress – [in] Any code units or code points that were read but not yet used
before the failure occurred. These will be stored in this handler.

• __output_progress – [in] Any code points or code units that have not yet been written
before the failure occurred. These will be stored in this handler.

inline ::ztd::span<_CodeUnit> code_units() const noexcept
Returns the code units from the last incomplete decode operations.

inline ::ztd::span<_CodePoint> code_points() const noexcept
Returns the code points from the last incomplete encode operations.

1.9. API Reference 115

ztd.text, Release 0.0.0

pass_handler

The pass_handler does exactly what its name implies: it passes the error as generated by the encoding object through
without touching it. Unlike ztd::text::assume_valid_handler, this one does not invoke undefined behavior because it
does not meet the ztd::text::is_ignorable_error_handler traits.

constexpr pass_handler_t ztd::text::pass_handler = {}
An instance of pass_handler_t for ease of use.

class pass_handler_t : public __txt_detail::__pass_through_handler_with<false>
An error handler that tells an encoding that it will pass through any errors, without doing any adjustment, cor-
rection or checking. Does not imply it is ignorable, unlike ztd::text::assume_valid_handler_t which can invoke
UB if an error occurs.

replacement_handler

The replacement_handler_t is the go-to error handling class. It is also the ztd::text::default_handler unless con-
figured otherwise.

Replacement works by using several different hooks on the provided encoding objects, or by falling back to some
defaults if certain conditions are met. The user-controllable hooks are:

• encoding.replacement_code_units(...), a function (which can be static or constexpr) that returns a
range of code units to insert directly into an output stream on a failed encode operation. It can also be called
as a secondary backup if an decode operation fails, whereupon it will use the values in the range to attempt
decodeing them into the output if possible. It can be empty, to indicate that nothing is to be inserted.

• encoding.replacement_code_points(...), a function (which can be static or constexpr) that returns
a range of code points to insert directly into an output stream on a failed decode operation. It can also be called
as a secondary backup if an encode operation fails, whereupon it will use the values in the range to attempt
encodeing them into the output if possible. It can be empty, to indicate that nothing is to be inserted.

• encoding.maybe_replacement_code_units(...), a function (which can be static or constexpr) that
returns a maybe-range. If the expression if (maybe_returned_range) evaluates to true, it will get
the range returned by the function by performing a dereference of decltype(auto) returned_range =
*maybe_returned_range;. If the conditional expression does not evaluate to true, it will assume that nothing
can be returned from the function. This is useful for runtime-only encodings or encodings that wrap other encod-
ings and may not have a replacement function. The dereferenced returned range is used exactly as its non-maybe
counterpart.

• encoding.maybe_replacement_code_points(...), a function (which can be static or constexpr)
that returns a maybe-range. If the expression if (maybe_returned_range) evaluates to true, it will get
the range returned by the function by performing a dereference of decltype(auto) returned_range =
*maybe_returned_range;. If the conditional expression does not evaluate to true, it will assume that nothing
can be returned from the function. This is useful for runtime-only encodings or encodings that wrap other encod-
ings and may not have a replacement function. The dereferenced returned range is used exactly as its non-maybe
counterpart.

Each replacement handler can take the current encode_state/decode_state parameter for its desired operation, if it
so chooses. This will allow replacements to hook into the statefulness of any given encoding operation. It fill first call
replacement_code_units(state) first, if it’s well-formed. Otherwise, it will call replacement_code_units().
It will do this with each of the 4 replacement functions mentioned above.

constexpr replacement_handler_t ztd::text::replacement_handler = {}
A convenience variable for passing the replacement_handler_t handler to functions.

116 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

class ztd::text::replacement_handler_t
An error handler that replaces bad code points and code units with a chosen code point / code unit sequence.

Remark This class hooks into the encodings passed as the first parameter to the error handling functions to see
if they define either replacement_code_points() or replacement_code_units() function. If so,
they will call them and use the returned contiguous range to isnert code points or code units into the func-
tion. If neither of these exist, then it checks for a definition of a maybe_replacement_code_points()
or a maybe_replacement_code_units() function. If either is present, they are expected to return a
std::optional of a contiguous range. If it is engaged (the std::optional is filled) it will be used.
Otherwise, if it is not engaged, then it will explicitly fall back to attempt to insert the default replacement
character U+FFFD (U'') or ? character. If the output is out of room for the desired object, then nothing
will be inserted at all.

Subclassed by default_handler_t

Public Functions

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, encode_result<_InputRange,

_OutputRange, _State> __result, const _InputProgress&, const
_OutputProgress&) const noexcept

The function call for inserting replacement code units at the point of failure, before returning flow back to
the caller of the encode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr auto operator()(const _Encoding &__encoding, decode_result<_InputRange,

_OutputRange, _State> __result, const _InputProgress&, const
_OutputProgress&) const noexcept

The function call for inserting replacement code points at the point of failure, before returning flow back
to the caller of the decode operation.

Parameters

• __encoding – [in] The Encoding that experienced the error.

• __result – [in] The current state of the encode operation.

throw_handler

The throw_handler simply throws a ztd::text::encoding_error as an exception. This should only EVER be used for
pre-verified, trusted input sources, debugging purposes, or similar; malformed text is a common enough occurrence
that throwing errors by default or using this handler by default is a bad idea in almost every way.

Throwing on encoding, decoding, and other errors can easily result in Denial of Service target points if this is used in
conjunction with user or untrusted input sources.

1.9. API Reference 117

ztd.text, Release 0.0.0

constexpr throw_handler_t ztd::text::throw_handler = {}
An instance of throw_handler_t for ease of use.

class ztd::text::throw_handler_t
An error handler that throws on any encode operation failure.

Remark This class absolutely should not be used unless the user is prepared to handle spurious failure, especially
for text processing that deals with input vectors. This can result in many exceptions being thrown, which
for resource-intensive applications could cause issues and result in Denial of Service by way of repeated,
unhandled, and unexpected failure.

Public Functions

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr encode_result<_InputRange, _OutputRange, _State> operator()(const _Encoding&, en-

code_result<_InputRange,
_OutputRange, _State>
__result, const
_InputProgress&, const
_OutputProgress&) const
noexcept(false)

Throws a ztd::text::encoding_error as an exception on an encode failure.

template<typename _Encoding, typename _InputRange, typename _OutputRange, typename _State,
typename _InputProgress, typename _OutputProgress>
inline constexpr decode_result<_InputRange, _OutputRange, _State> operator()(const _Encoding&, de-

code_result<_InputRange,
_OutputRange, _State>
__result, const
_InputProgress&, const
_OutputProgress&) const
noexcept(false)

Throws a ztd::text::encoding_error code as an exception on a decode failure.

1.9.5 Conversion and Counting Functions

count_as_decoded

ztd::text::count_as_decoded is a function that takes an input sequence of code_units and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets
the error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This
is, for example, the case with ztd::text::replacement_handler_t - output replacement code units or code points will be
counted as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok.
You can differentiate error-less text from non-error text by checking result.errors_were_handled(), which will
be true if the error handler is called regardless of whether or not the error handler “smooths” the problem over by
inserting replacement characters, doing nothing, or otherwise.

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

118 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• The text_count_as_decoded(input, encoding, handler, state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_decoded base function.

The base function call, basic_count_as_decoded, simply performs the core counting loop using the Lucky 7 design.

During the basic_count_as_decoded loop, if it detects that there is a preferable text_count_as_decoded_one, it
will call that method as text_count_as_decoded_one(input, encoding, handler, state) inside of the loop
rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_decoded directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto basic_count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting a decode operation.

Remark This method does not call ADL extension points. It attempts a combination of implementation tech-
niques to count code units, with a loop over the .decode call into an intermediate, unseen buffer being the
most basic guaranteed implementation attempt.

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting a decode operation.

1.9. API Reference 119

ztd.text, Release 0.0.0

Remark This method will first check if an ADL Extension Point text_count_as_decoded is callable with the
given arguments. If it is, then that method will be used to do the work after forwarding all four arguments
to that function call. Otherwise, it defers to ztd::text::basic_count_as_decoded.

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler)
Counts the number of code units that will result from attempting a decode operation.

Remark Calls ztd::text::count_as_decoded(Input, Encoding, ErrorHandler, State) with an state that is created
by ztd::text::make_decode_state(Encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _Encoding>
constexpr auto count_as_decoded(_Input &&__input, _Encoding &&__encoding)

Counts the number of code units that will result from attempting a decode operation.

Remark Calls ztd::text::count_as_decoded(Input, Encoding, ErrorHandler) with an error_handler that is
similar to ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code points there are.

• __encoding – [in] The encoding to count the input with.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input>

120 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto count_as_decoded(_Input &&__input)
Counts the number of code units that will result from attempting a decode operation.

Remark Calls ztd::text::count_as_decoded(Input, Encoding) with an encoding that is derived from
ztd::text::default_code_unit_encoding.

Parameters __input – [in] The input range (of code units) to find out how many code points there
are.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

count_as_encoded

ztd::text::count_as_encoded is a function that takes an input sequence of code_points and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets the
error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This is, for
example, the case with ztd::text::replacement_handler - output replacement code units or code points will be counted
as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok. You can
differentiate error-less text from non-error text by checking result.errors_were_handled(), which will be true
if the error handler is called regardless of whether or not the error handler “smooths” the problem over by inserting
replacement characters, doing nothing, or otherwise.

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

• The text_count_as_encoded(input, encoding, handler, state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_encoded base function.

The base function call, basic_count_as_encoded, simply performs the core counting loop using the Lucky 7 design.

During the basic_count_as_encoded loop, if it detects that there is a preferable text_count_as_encoded_one, it
will call that method as text_count_as_encoded_one(input, encoding, handler, state) inside of the loop
rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic encode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_encoded directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

1.9. API Reference 121

ztd.text, Release 0.0.0

Functions

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto basic_count_as_encoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting an encode operation on the input code points.

Remark This method will not check any ADL extension points. A combination of implementation techniques
will be used to count code units, with a loop over the .encode call into an intermediate, unseen buffer
being the most basic choice.

Parameters

• __input – [in] The input range (of code points) to find out how many code units there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler, typename _State>
constexpr auto count_as_encoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler, _State &__state)
Counts the number of code units that will result from attempting an encode operation on the input code points.

Remark This method will first check if an ADL Extension Point text_count_as_encoded is callable with the
given arguments. If it is, then that method will be used to do the work after forwarding all four arguments
to that function call. Otherwise, this defers to ztd::text::basic_count_as_encoded.

Parameters

• __input – [in] The input range (of code points) to find out how many code units there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

• __state – [inout] The state that will be used to count code units.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __state.

template<typename _Input, typename _Encoding, typename _ErrorHandler>
constexpr auto count_as_encoded(_Input &&__input, _Encoding &&__encoding, _ErrorHandler

&&__error_handler)
Counts the number of code units that will result from attempting an encode operation on the input code points.

Remark This method will call ztd::text::count_as_encoded(Input, Encoding, ErrorHandler, State) with an
state created by ztd::text::make_encode_state(Encoding).

122 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input range (of code points) to find out how many code units there are.

• __encoding – [in] The encoding to count the input with.

• __error_handler – [in] The error handler to invoke when an encode operation fails.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _Encoding>
constexpr auto count_as_encoded(_Input &&__input, _Encoding &&__encoding)

Counts the number of code units that will result from attempting an encode operation.

Remark This method will call ztd::text::count_as_encoded(Input, Encoding, ErrorHandler) by creating an
error_handler similar to ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code points) to find out how many code units there are.

• __encoding – [in] The encoding to count the input with.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input>
constexpr auto count_as_encoded(_Input &&__input)

Counts the number of code units that will result from attempting an encode operation on the input code points.

Remark Calls ztd::text::count_as_encoded(Input, Encoding) with an encoding that is derived from
ztd::text::default_code_unit_encoding.

Parameters __input – [in] The input range (of code points) to find out how many code units there
are.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

count_as_transcoded

ztd::text::count_as_transcoded is a function that takes an input sequence of code_units and attempts to count
them, according to the error handler that is given. Because the error handler is included as part of the function call (and
is provided by default is one is not passed in), the count operation will also continue to count if the error handler sets
the error_code member of the result to ztd::text::encoding_error::ok but still performs some action. This
is, for example, the case with ztd::text::replacement_handler_t - output replacement code units or code points will be
counted as part of the final count and returned with result.error_code == ztd::text::encoding_error::ok.
You can differentiate error-less text from non-error text by checking result.errors_were_handled(), which will
be true if the error handler is called regardless of whether or not the error handler “smooths” the problem over by
inserting replacement characters, doing nothing, or otherwise.

1.9. API Reference 123

ztd.text, Release 0.0.0

The overloads of this function increase the level of control you have with each passed argument. At the last overload
with four arguments, the function attempts to work call some extension points or falls back to the base function call in
this order:

• The text_count_as_transcoded(input, from_encoding, to_encoding, from_handler,
to_handler, from_state, to_state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_count_as_transcoded base function.

The base function call, basic_count_as_transcoded, simply performs the core counting loop using the Lucky 7
design.

During the basic_count_as_transcoded loop, if it detects that there is a preferable
text_count_as_transcoded_one, it will call that method as text_count_as_transcoded_one(input,
encoding, handler, state) inside of the loop rather than doing the core design.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_count_as_transcoded directly. This can be useful to stop infinity loops
when your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto basic_count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark This method will not check any ADL extension points. A combination of implementation techniques
will be used to count code units, with a loop over the .encode_one / .decode_one call into an interme-
diate, unseen buffer being the most basic choice.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

124 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

• __to_state – [inout] The state related to the __to_encoding that will be used for the final
encoding step.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __from_state and __to_state .

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state,
_ToState &__to_state)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark This method checks for the ADL extension point text_count_as_transcoded . It will be called if
it is possible. Otherwise, this function will defer to ztd::text::basic_count_as_transcoded.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

• __to_state – [inout] The state related to the __to_encoding that will be used for the final
encoding step.

Returns A ztd::text::count_result that includes information about how many code units are present,
taking into account any invoked errors (like replacement from ztd::text::replacement_handler_t)
and a reference to the provided __from_state and __to_state .

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler, typename _FromState>

1.9. API Reference 125

ztd.text, Release 0.0.0

constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding
&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding,
from_error_handler, to_error_handler, from_state, to_state) with an to_state created by
ztd::text::make_encode_state(to_encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when an intermediary decoding
operation fails.

• __to_error_handler – [in] The error handler to invoke when the final encoding operation
fails.

• __from_state – [inout] The state attached to the __from_encoding that will be used for
the intermediary decode step.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _FromErrorHandler,
typename _ToErrorHandler>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding,
from_error_handler, to_error_handler, from_state) with an from_state created by
ztd::text::make_decode_state(from_encoding).

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when the decode portion of the
transcode operation fails.

126 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __to_error_handler – [in] The error handler to invoke when the encode portion of the
transcode operation fails.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Counts the number of code units that will result from attempting an transcode operation.

Remark This method will call ztd::text::count_as_transcoded(input, from_encoding, to_encoding,
from_error_handler, to_error_handler) by creating an to_error_handler similar to
ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

• __from_error_handler – [in] The error handler to invoke when the decode portion of the
transcode operation fails.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

template<typename _Input, typename _FromEncoding, typename _ToEncoding>
constexpr auto count_as_transcoded(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Counts the number of code units that will result from attempting an transcode operation.

Remark This method will call ztd::text::count_as_transcoded(Input, Encoding, ErrorHandler) by creating an
error_handler similar to ztd::text::default_handler_t.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __from_encoding – [in] The encoding that is going to be used to decode the input into an
intermediary output.

• __to_encoding – [in] The encoding that is going to be used to encode the intermediary
output.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

1.9. API Reference 127

ztd.text, Release 0.0.0

template<typename _Input, typename _ToEncoding>
constexpr auto count_as_transcoded(_Input &&__input, _ToEncoding &&__to_encoding)

Counts the number of code units that will result from attempting an transcode operation on the input code points.

Remark Calls ztd::text::count_as_transcoded(Input, Encoding) with an encoding that is derived from
ztd::text::default_code_unit_encoding.

Parameters

• __input – [in] The input range (of code units) to find out how many code units of the
transcoded output there are.

• __to_encoding – [in] The encoding that is going to be used to encode the input into an
intermediary output.

Returns A ztd::text::stateless_count_result that includes information about how many
code units are present, taking into account any invoked errors (like replacement from
ztd::text::replacement_handler_t).

decode

The decode grouping of functions (decode, decode_to, and decode_into) perform the task of doing bulk decoding
from an input of code_units to the encoding’s code_point type.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::decode_result or ztd::text::stateless_decode_result with the desired output container embedded as the
.output parameter (mid level); or,

• ztd::text::decode_result or ztd::text::stateless_decode_result returning just the input and output ranges (lowest
level).

128 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

decode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output con-
tainer type. The default container will either be a std::basic_string of the code_point type, or a std::vector
if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::decode<std::vector<char32_t>>("bark", ztd::text::ascii{});. The output container is
default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the decode function, returning only the container and not returning any of the
result or state information used to construct it.

decode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type that is embedded within a ztd::text::decode_result, or a ztd::text::stateless_decode_result, depending
on whether or not you called the version which takes a ztd::text::decode_state_t<Encoding> as a parameter or if it had
to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::decode_to<std::u32string>("meow", ztd::text::ascii{});. The output container is default
constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

decode_into(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, encoding, output, handler, and state and writes data into
the output range specified by output. The result is a ztd::text::decode_result, or a ztd::text::stateless_decode_result,
depending on whether or not you called the version which takes a ztd::text::decode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

1.9. API Reference 129

ztd.text, Release 0.0.0

For Everything

All named functions have 4 overloads. Each of the “higher level” functions, at the end of their overload call chain, will
call the lower-level decode_into to perform the work. The final decode_into call uses the following ordering of
extension points into calling the base implementation:

• text_decode_into(input, encoding, output, handler, state)

• An internal, implementation-defined customization point.

• basic_decode_into

The base function call, basic_decode_into, simply performs the core decode loop using the Lucky 7 design. This
design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained devices.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_decode_into directly. This can be useful to stop infinity loops when your
extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts the code units of the given __input view through the encoding to code points into the __output view.

Remark This function performs the bog-standard, basic loop for decoding. It talks to no ADL extension points.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>

130 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler
&&__error_handler, _State &__state)

Converts the code units of the given __input view through the encoding to code points into the __output view.

Remark This function detects whether or not the ADL extension point text_decode can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise,
it will loop over the two encodings and attempt to decode by repeatedly calling the encoding’s required
decode_one function.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns A ztd::text::decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler)
Converts the code units of the given __input view through the encoding to code points into the __output view.

Remark Creates a default state using ztd::text::make_decode_state.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto decode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts the code units of the given __input view through the encoding to code points into the __output view.

Remark Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as care-
less.

Parameters

1.9. API Reference 131

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto decode_into(_Input &&__input, _Output &&__output)

Converts the code units of the given __input view through the encoding to code points into the __output view.

Remark Creates a default encoding by figuring out the value_type of the __input, then passing that type
into ztd::text::default_code_point_encoding_t. That encoding is that used to decode the input code units,
by default.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __output – [in] An output_view to write code points to as the result of the decode operation
from the intermediate code units.

Returns A ztd::text::stateless_decode_result object that contains references to __state.

template<typename _OutputContainer, typename _Input, typename _Encoding, typename _ErrorHandler,
typename _State>
constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,

_State &__state)
Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function detects creates a container of type _OutputContainer and uses a typical
std::back_inserter or std::push_back_inserter to fill in elements as it is written to. The result is
then returned, with the .output value put into the container.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns A ztd::text::decode_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer, typename _Input, typename _Encoding, typename _ErrorHandler>

132 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)
Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates a state using ztd::text::make_decode_state.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer, typename _Input, typename _Encoding>
constexpr auto decode_to(_Input &&__input, _Encoding &&__encoding)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

Returns A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer, typename _Input>
constexpr auto decode_to(_Input &&__input)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates an encoding by using the value_type of the __input which is then passed
through the ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters __input – [in] An input_view to read code units from and use in the decode operation
that will produce code points.

Returns A ztd::text::stateless_decode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>

1.9. API Reference 133

ztd.text, Release 0.0.0

constexpr auto decode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler, _State
&__state)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function detects creates a container of type _OutputContainer and uses a typical
std::back_inserter or std::push_back_inserter to fill in elements as it is written to.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s decode step.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto decode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates a state using ztd::text::make_decode_state.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto decode(_Input &&__input, _Encoding &&__encoding)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

134 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce code points.

• __encoding – [in] The encoding that will be used to decode the input’s code points into
output code units.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto decode(_Input &&__input)

Converts the code units of the given __input view through the encoding to code points the specified
_OutputContainer type.

Remark This function creates an encoding by using the value_type of the __input which is then passed
through the ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters __input – [in] An input_view to read code units from and use in the decode operation
that will produce code points.

Returns An object of type _OutputContainer .

encode

The encode grouping of functions (encode, encode_to, and encode_into) perform the task of doing bulk decoding
from an input of code_points to the encoding’s code_unit type.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::encode_result or ztd::text::stateless_encode_result with the desired output container embedded as the
.output parameter (mid level); or,

• ztd::text::encode_result or ztd::text::stateless_encode_result returning just the input and output ranges (lowest
level).

1.9. API Reference 135

ztd.text, Release 0.0.0

encode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type. The default container will either be a std::basic_string of the code_unit type, or a std::vector
if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::encode<std::vector<std::byte>>(U"bark", ztd::text::utf16_be{});. The output con-
tainer is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the encode function, returning only the container and not returning any of the
result or state information used to construct it.

encode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, encoding, handler and state and produces an output
container type that is embedded within a ztd::text::encode_result, or a ztd::text::stateless_encode_result, depending
on whether or not you called the version which takes a ztd::text::encode_state_t<Encoding> as a parameter or if it had
to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::encode_to<std::string>(U"meow", ascii{});. The output container is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

encode_into(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, encoding, output, handler, and state and writes data into
the output range specified by output. The result is a ztd::text::encode_result, or a ztd::text::stateless_encode_result,
depending on whether or not you called the version which takes a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

136 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

For Everything

All named functions have 4 overloads. Each of the “higher level” functions, at the end of their overload call chain, will
call the lower-level encode_into to perform the work. The final encode_into call uses the following ordering of
extension points into calling the base implementation:

• text_encode_into(input, encoding, output, handler, state)

• An internal, implementation-defined customization point.

• basic_encode_into(input, encoding, output, handler, state)

The final function call, basic_encode_into, simply performs the core encode loop using the Lucky 7 design. This
design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained devices.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic encode_one
function on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_encode_into directly. This can be useful to stop infinity loops when your
extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>
constexpr auto basic_encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output,

_ErrorHandler &&__error_handler, _State &__state)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark This function does not attempt to call any extension points for encoding. It simply uses the encoding
and attempts to encode by repeatedly calling the encoding’s required encode_one function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler, typename
_State>

1.9. API Reference 137

ztd.text, Release 0.0.0

constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler
&&__error_handler, _State &__state)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark This function detects whether or not the ADL extension point text_encode can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise,
it will loop over the two encodings and attempt to encode by repeatedly calling the encoding’s required
encode_one function.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns A ztd::text::encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output, typename _ErrorHandler>
constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output, _ErrorHandler

&&__error_handler)
Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark Creates a default state using ztd::text::make_encode_state.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Encoding, typename _Output>
constexpr auto encode_into(_Input &&__input, _Encoding &&__encoding, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark Creates a default error_handler that is similar to ztd::text::default_handler_t, but marked as care-
less.

Parameters

138 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

Returns A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _Input, typename _Output>
constexpr auto encode_into(_Input &&__input, _Output &&__output)

Converts the code points of the given __input view through the encoding to code units into the __output view.

Remark Creates a default encoding by figuring out the value_type of the __input, then passing that type
into ztd::text::default_code_point_encoding_t. That encoding is that used to encode the input code points,
by default.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

Returns A ztd::text::stateless_encode_result object that contains references to __state.

template<typename _OutputContainer, typename _Input, typename _Encoding, typename _ErrorHandler,
typename _State>
constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler,

_State &__state)
Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function detects creates a container of type _OutputContainer and uses a typical
std::back_inserter or std::push_back_inserter to fill in elements as it is written to. The result is
then returned, with the .output value put into the container.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns A ztd::text::encode_result object that contains references to __state and an output of type
_OutputContainer.

template<typename _OutputContainer, typename _Input, typename _Encoding, typename _ErrorHandler>

1.9. API Reference 139

ztd.text, Release 0.0.0

constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)
Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates a state using ztd::text::make_encode_state.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer, typename _Input, typename _Encoding>
constexpr auto encode_to(_Input &&__input, _Encoding &&__encoding)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

Returns A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer, typename _Input>
constexpr auto encode_to(_Input &&__input)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates an encoding by using the value_type of the __input which is then passed
through the ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters __input – [in] An input_view to read code points from and use in the encode operation
that will produce code units.

Returns A ztd::text::stateless_encode_result object whose output is of type _OutputContainer.

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler, typename _State>

140 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

constexpr auto encode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler, _State
&__state)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function detects creates a container of type _OutputContainer and uses a typical
std::back_inserter or std::push_back_inserter to fill in elements as it is written to.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

• __state – [inout] A reference to the associated state for the __encoding ‘s encode step.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding, typename
_ErrorHandler>
constexpr auto encode(_Input &&__input, _Encoding &&__encoding, _ErrorHandler &&__error_handler)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates a state using ztd::text::make_encode_state.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

• __error_handler – [in] The error handlers for the from and to encodings, respectively.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input, typename _Encoding>
constexpr auto encode(_Input &&__input, _Encoding &&__encoding)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates a handler using ztd::text::default_handler_t, but marks it as careless.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters

1.9. API Reference 141

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code points from and use in the encode operation that
will produce code units.

• __encoding – [in] The encoding that will be used to encode the input’s code points into
output code units.

Returns An object of type _OutputContainer .

template<typename _OutputContainer = void, typename _Input>
constexpr auto encode(_Input &&__input)

Converts the code points of the given __input view through the encoding to code units in the specified
_OutputContainer type.

Remark This function creates an encoding by using the value_type of the __input which is then passed
through the ztd::text::default_code_point_encoding type to get the default desired encoding.

Template Parameters _OutputContainer – The container type to serialize data into.

Parameters __input – [in] An input_view to read code points from and use in the encode operation
that will produce code units.

Returns An object of type _OutputContainer .

transcode

The transcode grouping of functions (transcode, transcode_to, and transcode_into) perform the task of doing
bulk transcoding from an input of code_units to a second encoding’s code_unit type. It expects to traffic through
the code_point type as the intermediary between the two functions.

Named Groups

There are 3 named functions for this behavior, and each function comes with several function overloads. Each named
function produces increasingly more information, letting you opt into just how much information and control you’d like
over the algorithm and behavior. The first one simply returns a container with the transformation applied, discarding
much of the operation’s result information. This is useful for quick, one-off conversions where you do not care about
any errors and would rather let it be handled by the error handler. The second _to suffixed functions return a container
within a result type that contains additional information. The final _into suffixed functions take an output range
to write into, letting you explicitly control just how much space there is to write into as well as returning a detailed
result type.

The return type for these function calls is one of:

• the desired output container (highest level);

• ztd::text::transcode_result or ztd::text::stateless_transcode_result with the desired output container embedded
as the .output parameter (mid level); or,

• ztd::text::transcode_result or ztd::text::stateless_transcode_result returning just the input and output ranges
(lowest level).

142 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

transcode(...)

This is the highest level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type. The default container will either
be a std::basic_string of the code_unit type, or a std::vector if it is not a known “character” type.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::transcode<std::vector<char16_t>>("bark", ztd::text::utf16{});. The output container
is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

This is the “fire and forget” version of the transcode function, returning only the container and not returning any of
the result or state information used to construct it.

transcode_to(...)

This is the mid level bulk function.

This set of function overloads takes the provided input, from_encoding, to_encoding, from_handler,
to_handler, from_state, and to_state and produces an output container type that is embedded within a
ztd::text::transcode_result, or a ztd::text::stateless_transcode_result, depending on whether or not you called the ver-
sion which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

The container type can be specified by passing it as an explicit template parameter to this function, such as
ztd::text::transcode_to<std::string>(U"meow", ascii{});. The output container is default constructed.

It will either call push_back/insert directly on the target container to fill it up, or serialize data to a temporary buffer
(controlled by ZTD_TEXT_INTERMEDIATE_TRANSCODE_BUFFER_BYTE_SIZE) before then copying it into the
desired output container through any available means (bulk .insert, repeated .push_back, or repeated single .
insert with the .cend() iterator in that order).

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

transcode_into(...)

This is the lowest level bulk function.

This set of function overloads takes the provided input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, and to_state to write data into an output range specified by output. The result is a
ztd::text::transcode_result, or a ztd::text::stateless_transcode_result, depending on whether or not you called the ver-
sion which takes a ztd::text::decode_state_t<Encoding> and/or a ztd::text::encode_state_t<Encoding> as a parameter
or if it had to create one on the stack internally and discard it after the operation was finished.

It is up to the end-user to provide a suitably-sized output range for output, otherwise this operation may return with
ztd::text::encoding_error::insufficient_output. for the result‘s error_code member. The amount of space con-
sumed can be determined by checking the std::distance between the .begin() of the original output parameter
and the .begin() of the returned .output member. The result also has error information and an .input member for
checking how much input was consumed.

If nothing goes wrong or the error handler lets the algorithm continue, .input on the result should be empty.

1.9. API Reference 143

ztd.text, Release 0.0.0

For Everything

All named functions have 6 overloads. Each of the “higher level” functions, at the end of their overload call chain,
will call the lower-level transcode_into to perform the work. The final transcode_into call uses the following
ordering of extension points into calling the base implementation:

• The text_transcode_into(input, from_encoding, output, to_encoding, ...) extension point.

• An implementation-defined extension point if any internal optimizations are possible.

• The basic_transcode_into(input, from_encoding, output, to_encoding, ...) function.

The final function call, basic_transcode_into, simply performs the core transcode loop using the Lucky 7 design.
basic_transcode_into accommodates the lowest level transformation using just decode_one into a suitably sized
intermediate buffer and then an encode_one into the output, calling the relevant error handlers along the way. This
design also means minimal stack space is used, keeping the core algorithm suitable for resource-constrained devices.

However, there is a caveat: if there exists a text_transcode_one(input, from_encoding, output,
to_encoding, ...) that is callable then it will be called to perform one unit of complete transformation. Other-
wise, decode_one/encode_one

The transcode_one extension point is also used in the ztd::text::transcode_view<. . .> to speed up one-by-one trans-
lations for iteration-based types, where possible.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
function of the from_encoding and the transcode_one of the to_encoding function on your Encoding Object type
will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_transcode_into directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto basic_transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output

&&__output, _ToEncoding &&__to_encoding, _FromErrorHandler
&&__from_error_handler, _ToErrorHandler &&__to_error_handler,
_FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function detects whether or not the ADL extension point text_transcode can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise,
it will loop over the two encodings and attempt to transcode by first decoding the input code units to code
points, then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

144 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _Output, typename _FromEncoding, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function detects whether or not the ADL extension point text_transcode can be called with the
provided parameters. If so, it will use that ADL extension point over the default implementation. Otherwise,
it will loop over the two encodings and attempt to transcode by first decoding the input code units to code
points, then encoding the intermediate code points to the desired, output code units.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handlers for the from and to encodings, respec-
tively.

• __to_error_handler – [in] The error handlers for the from and to encodings, respectively.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

1.9. API Reference 145

ztd.text, Release 0.0.0

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns A ztd::text::transcode_result object that contains references to __from_state and
__to_state.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function calls the base reference, the ztd::text::transcode_into after creating a to_state from
ztd::text::make_encode_state. The result from this function returns a ztd::text::stateless_transcode_result
as opposed to a ztd::text::transcode_result because the state information is on the stack, and returning the
state in those types by reference will result in references to memory that has already been cleaned up. If
you need access to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns A ztd::text::stateless_transcode_result object.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function creates a decode state from_state by calling ztd::text::make_decode_state. The result
from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result

146 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

in references to memory that has already been cleaned up. If you need access to the state parameters, call
the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding, typename
_FromErrorHandler>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function creates an to_error_handler from a class like ztd::text::default_handler_t, but that
is marked as careless since you did not explicitly provide it. This matters for lossy conversions that are
not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to a
ztd::text::transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access
to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

template<typename _Input, typename _FromEncoding, typename _Output, typename _ToEncoding>
constexpr auto transcode_into(_Input &&__input, _FromEncoding &&__from_encoding, _Output &&__output,

_ToEncoding &&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

1.9. API Reference 147

ztd.text, Release 0.0.0

Remark This function creates an from_error_handler from a class like ztd::text::default_handler_t, but
that is marked as careless since you did not explicitly provide it. This matters for lossy conversions that
are not injective. The result from this function returns a ztd::text::stateless_transcode_result as opposed to
a ztd::text::transcode_result because the state information is on the stack, and returning the state in those
types by reference will result in references to memory that has already been cleaned up. If you need access
to the state parameters, call the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

template<typename _Input, typename _ToEncoding, typename _Output>
constexpr auto transcode_into(_Input &&__input, _ToEncoding &&__to_encoding, _Output &&__output)

Converts the code units of the given input view through the from encoding to code units of the to encoding into
the output view.

Remark This function creates both: a from_error_handler using a ztd::text::default_handler_t that is
marked as careless to pass to the next function overload; and, a from_encoding to interpret the __input by
checking the __input ‘s value_type. This matters for lossy conversions that are not injective. The result
from this function returns a ztd::text::stateless_transcode_result as opposed to a ztd::text::transcode_result
because the state information is on the stack, and returning the state in those types by reference will result
in references to memory that has already been cleaned up. If you need access to the state parameters, call
the lower-level functionality with your own created states.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __output – [in] An output_view to write code units to as the result of the encode operation
from the intermediate code points.

template<typename _OutputContainer, typename _Input, typename _FromEncoding, typename _ToEncoding,
typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename _ToState>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state, _ToState
&__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

148 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns A ztd::text::transcode_result object that contains references to __from_state and
__to_state and an output parameter that contains the _OutputContainer specified. If the
container has a container.reserve function, it is and some multiple of the input’s size is used
to pre-size the container, to aid with push_back / insert reallocation pains.

template<typename _OutputContainer, typename _Input, typename _FromEncoding, typename _ToEncoding,
typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark A default state for the encode step of the operation is create using ztd::text::make_encode_state. The
return type is stateless since both states must be passed in. If you want to have access to the states, create
both of them yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

1.9. API Reference 149

ztd.text, Release 0.0.0

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns A ztd::text::stateless_transcode_result object that contains references to an container.
output parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _FromEncoding, typename _ToEncoding,
typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler,
_ToErrorHandler &&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark A default state for the decode step of the operation is create using ztd::text::make_decode_state. The
return type is stateless since both states must be passed in. If you want to have access to the states, create
both of them yourself and pass them into a lower-level function that accepts those parameters.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns A ztd::text::stateless_transcode_result object that contains references to an container.
output parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _FromEncoding, typename _ToEncoding,
typename _FromErrorHandler>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark A to_error_handler for the encode step of the operation is created using default construction of a
ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must
be passed in. If you want to have access to the states, create both of them yourself and pass them into a
lower-level function that accepts those parameters.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

150 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns A ztd::text::stateless_transcode_result object that contains references to an container.
output parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _FromEncoding, typename _ToEncoding>
constexpr auto transcode_to(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark A from_error_handler for the encode step of the operation is created using default construction of
a ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must
be passed in. If you want to have access to the states, create both of them yourself and pass them into a
lower-level function that accepts those parameters.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns A ztd::text::stateless_transcode_result object that contains references to an container.
output parameter that contains the _OutputContainer specified.

template<typename _OutputContainer, typename _Input, typename _ToEncoding>
constexpr auto transcode_to(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark A from_error_handler for the encode step of the operation is created using default construction of
a ztd::text::default_handler_t that is marked as careless. The return type is stateless since both states must
be passed in. If you want to have access to the states, create both of them yourself and pass them into a
lower-level function that accepts those parameters.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

1.9. API Reference 151

ztd.text, Release 0.0.0

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns A ztd::text::stateless_transcode_result object that contains references to an container.
output parameter that contains the _OutputContainer specified.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState, typename
_ToState>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state, _ToState &__to_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

• __to_state – [inout] A reference to the associated state for the __to_encoding ‘s encode
step.

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler, typename _FromState>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler, _FromState &__from_state)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark This function creates an to_state for the encoding step of the operation using
ztd::text::make_encode_state.

152 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

• __from_state – [inout] A reference to the associated state for the __from_encoding ‘s
decode step.

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler, typename _ToErrorHandler>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler, _ToErrorHandler
&&__to_error_handler)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark This function creates an from_state for the encoding step of the operation using
ztd::text::make_decode_state.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

• __to_error_handler – [in] The error handler for the __to_encoding ‘s encode step.

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

1.9. API Reference 153

ztd.text, Release 0.0.0

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding, typename _FromErrorHandler>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding, _FromErrorHandler &&__from_error_handler)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark This function creates a to_error_handler from a class like ztd::text::default_handler_t, but that is
marked as careless since you did not explicitly provide it. This matters for lossy conversions that are not
injective.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

• __from_error_handler – [in] The error handler for the __from_encoding ‘s decode
step.

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

template<typename _OutputContainer = void, typename _Input, typename _FromEncoding, typename
_ToEncoding>
constexpr auto transcode(_Input &&__input, _FromEncoding &&__from_encoding, _ToEncoding

&&__to_encoding)
Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark This function creates a from_error_handler from a class like ztd::text::default_handler_t, but that
is marked as careless since you did not explicitly provide it. This matters for lossy conversions that are not
injective.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __from_encoding – [in] The encoding that will be used to decode the input’s code units
into intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

154 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

template<typename _OutputContainer = void, typename _Input, typename _ToEncoding>
constexpr auto transcode(_Input &&__input, _ToEncoding &&__to_encoding)

Converts the code units of the given input view through the from encoding to code units of the to encoding for
the output, which is then returned in a result structure with additional information about success.

Remark This function creates both: a from_error_handler from a class like ztd::text::default_handler_t,
but that is marked as careless since you did not explicitly provide it; and, a from_encoding derived from
the "__input"'s value_type. The careless marking matters for lossy conversions that are not injective.

Template Parameters _OutputContainer – The container to default-construct and serialize data
into. Typically, a std::basic_string or a std::vector of some sort.

Parameters

• __input – [in] An input_view to read code units from and use in the decode operation that
will produce intermediate code points.

• __to_encoding – [in] The encoding that will be used to encode the intermediate code points
into the final code units.

Returns An _OutputContainer with the result, regardless of whether an error occurs or not. If
you are looking for error information and not just a quick one-off conversion function, please use
ztd::text::transcode_to or ztd::text::transcode_into.

validate_decodable_as

ztd::text::validate_decodable_as is a function that takes an input sequence of code_units and attempts to val-
idate that they can be turned into the code_points of the provided encoding. Unlike the ztd::text::count_as_decoded
function, this does not take an error handler. Any error, even if it would be corrected over, produces a stop in the
algorithm and a validate_result/stateless_validate_result object gets returned with the .valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_decodable_as(input, encoding, decode_state) extension point, if possible.

• The text_validate_decodable_as(input, encoding, decode_state, encode_state) extension
point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_decodable_as base function.

The base function call, basic_validate_decodable_as, simply performs the core validating loop using the Lucky
7 design. The reason the last overload takes 2 state arguments is due to how the base implementation works from the
core validating loop. If during the 3-argument overload it is detected that text_validate_decodable_as(input,
encoding, decode_state) can be called, it will be called without attempt to create an encode_state value with
ztd::text::make_encode_state(. . .).

During the basic_validate_decodable_as loop, if it detects that there is a preferable
text_validate_decodable_as_one, it will call that method as text_validate_decodable_as_one(input,
encoding, decode_state) inside of the loop rather than doing the core design.

The ztd::text::validate_result type only includes the decode_state in all cases.

1.9. API Reference 155

ztd.text, Release 0.0.0

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-defined
extension points, then call basic_validate_decodable_as directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _DecodeState, typename _EncodeState>
constexpr auto basic_validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state, _EncodeState &__encode_state)
Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark This function explicitly does not call any extension points. It defers to doing a typical loop over the
code points to verify it can be decoded into code points, and then encoded back into code units, with no
errors and with the exact same value sequence as the original.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _Encoding, typename _DecodeState, typename _EncodeState>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state, _EncodeState &__encode_state)
Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark This functions checks to see if extension points for text_validate_decodable_as is available tak-
ing the available 4 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_decodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

156 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

template<typename _Input, typename _Encoding, typename _DecodeState>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding, _DecodeState

&__decode_state)
Validates the code units of the __input according to the __encoding with the given state __decode_state to
see if it can be turned into code points.

Remark This functions checks to see if extension points for text_validate_decodable_as is available
taking the available 3 parameters. If so, it calls this. Otherwise, it creates an encoding state through
ztd::text::make_encode_state before calling ztd::text::validate_decodable_as(__input, __encoding, __de-
code_state, __encode_state).

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

template<typename _Input, typename _Encoding>
constexpr auto validate_decodable_as(_Input &&__input, _Encoding &&__encoding)

Validates the code units of the __input according to the __encoding to see if they can be turned into code
points.

Remark This functions creates an encoding state through ztd::text::make_decode_state before calling the next
overload of ztd::text::validate_decodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input>
constexpr auto validate_decodable_as(_Input &&__input)

Validates the code units of the __input to see if it can be turned into code points.

Remark This functions creates an encoding by passing the value_type of the __input range through
ztd::text::default_code_unit_encoding.

Parameters __input – [in] The input range of code units to validate is possible for encoding into
code points.

Returns A ztd::text::stateless_validate_result detailing whether or not the input code points can be
turned into code units of the corresponding encoding.

1.9. API Reference 157

ztd.text, Release 0.0.0

validate_encodable_as

ztd::text::validate_encodable_as is a function that takes an input sequence of code_points and attempts to
validate that they can be turned into the code_units of the provided encoding. Unlike the ztd::text::count_as_encoded
function, this does not take an error handler. Any error, even if it would be corrected over, produces a stop in the
algorithm and a validate_result/stateless_validate_result object gets returned with the .valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_encodable_as(input, encoding, encode_state) extension point, if possible.

• The text_validate_encodable_as(input, encoding, encode_state, decode_state) extension
point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_encodable_as base function.

The base function call, basic_validate_encodable_as, simply performs the core validating loop using the Lucky
7 design. The reason the last overload takes 2 state arguments is due to how the base implementation works from the
core validating loop. If during the 3-argument overload it is detected that text_validate_encodable_as(input,
encoding, encode_state) can be called, it will be called without attempt to create an decode_state value with
ztd::text::make_decode_state(. . .).

During the basic_validate_encodable_as loop, if it detects that there is a preferable
text_validate_decodable_as_one, it will call that method as text_validate_encodable_as_one(input,
encoding, encode_state) inside of the loop rather than doing the core design.

The ztd::text::validate_result type only includes the encode_state in all cases.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-defined
extension points, then call basic_validate_encodable_as directly. This can be useful to stop infinity loops when
your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

Functions

template<typename _Input, typename _Encoding, typename _EncodeState, typename _DecodeState>
constexpr auto basic_validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state, _DecodeState &__decode_state)
Validates the code points of the __input according to the __encoding with the given states __encode_state
and __decode_state.

Remark This function explicitly does not check any of the extension points. It defers to doing a typical loop
over the code points to verify it can be encoded into code units, and then decoded into code points, with no
errors.

Parameters

158 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

• __decode_state – [in] The state to use for the decoding portion of the validation check, if
needed.

template<typename _Input, typename _Encoding, typename _EncodeState, typename _DecodeState>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state, _DecodeState &__decode_state)
Validates the code points of the __input according to the __encoding with the given states __encode_state
and __decode_state.

Remark This functions checks to see if extension points for text_validate_encodable_as is available tak-
ing the available 4 parameters. If so, it calls this. Otherwise, it defers to doing a typical loop over the code
points to verify it can be encoded into code units, and then decoded into code points, with no errors.

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

• __decode_state – [in] The state to use for the decoding portion of the validation check, if
needed.

template<typename _Input, typename _Encoding, typename _EncodeState>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding, _EncodeState

&__encode_state)
Validates the code points of the __input according to the __encoding with the given states
"__encode_state".

Remark This functions checks to see if extension points for text_validate_encodable_as is available tak-
ing the available 3 parameters. If so, it calls this. Otherwise, it defers to ztd::text::validate_encodable_as.

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

• __encoding – [in] The encoding to verify can properly encode the input of code units.

• __encode_state – [in] The state for encoding to use.

template<typename _Input, typename _Encoding>
constexpr auto validate_encodable_as(_Input &&__input, _Encoding &&__encoding)

Validates the code points of the __input according to the "__encoding".

Parameters

• __input – [in] The input range of code points to validate is possible for encoding into code
units.

1.9. API Reference 159

ztd.text, Release 0.0.0

• __encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input>
constexpr auto validate_encodable_as(_Input &&__input)

Validates the code points of the input.

Remark This passes the default encoding as inferred from the discernible value_type of the input range input
into the ztd::text::default_code_point_encoding.

Parameters __input – [in] The input range of code points to validate is possible for encoding into
code units.

validate_transcodable_as

ztd::text::validate_transcodable_as is a function that takes an input sequence of code_units and at-
tempts to validate that they can be turned into the code_points of the provided encoding. Unlike the
ztd::text::count_as_decoded function, this does not take an error handler. Any error, even if it would be corrected
over, produces a stop in the algorithm and a validate_result/stateless_validate_result object gets returned with the
.valid member set to false.

The overloads of this function increase the level of control with each passed argument. At the last overload with four
arguments, the function attempts to work call some extension points or falls back to the base function call in this order:

• The text_validate_transcodable_as(input, from_encoding, to_encoding, decode_state,
encode_state) extension point, if possible.

• An internal, implementation-defined customization point.

• The basic_validate_transcodable_as base function.

The base function call, basic_validate_transcodable_as, simply performs the core validating loop us-
ing the Lucky 7 design. The reason the last overload takes 2 state arguments is due to how the base im-
plementation works from the core validating loop. If during the 3-argument overload it is detected that
text_validate_transcodable_as(input, encoding, decode_state) can be called, it will be called without
attempt to create an encode_state value with ztd::text::make_encode_state(. . .).

During the basic_validate_transcodable_as loop, if it detects that there is
a preferable text_validate_transcodable_as_one, it will call that method as
text_validate_transcodable_as_one(input, encoding, decode_state) inside of the loop rather than
doing the core design.

The ztd::text::validate_result type only includes the decode_state in all cases.

Note: This means that if you implement none of the extension points whatsoever, implementing the basic decode_one
and encode_one functions on your Encoding Object type will guarantee a proper, working implementation.

Note: If you need to call the “basic” form of this function that takes no secret implementation shortcuts or user-
defined extension points, then call basic_validate_transcodable_as directly. This can be useful to stop infinity
loops when your extension points cannot handle certain inputs and thereby needs to “delegate” to the basic case.

160 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Functions

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState,
typename _EncodeState>
constexpr auto basic_validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState
&__decode_state, _EncodeState &__encode_state)

Validates the code units of the __input according to the __from_encoding with the given states
__decode_state and __encode_state to see if it can be turned into code points, and then code units again.

Remark This function explicitly does not call any extension points. It defers to doing a typical loop over the
code points to verify it can be decoded into code points, and then encoded back into code units, with no
errors and with the exact same value sequence as the original.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState,
typename _EncodeState>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState &__decode_state,
_EncodeState &__encode_state)

Validates the code units of the __input according to the __encoding with the given states __decode_state
and __encode_state to see if it can be turned into code points.

Remark This functions checks to see if extension points for text_validate_transcodable_as is
available taking the available 4 parameters. If so, it calls this. Otherwise, it defers to
ztd::text::validate_transcodable_as.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

• __encode_state – [in] The state to use for the encoding portion of the validation check.

template<typename _Input, typename _FromEncoding, typename _ToEncoding, typename _DecodeState>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding, _DecodeState &__decode_state)
Validates the code units of the __input according to the __from_encoding object with the given state
__decode_state to see if it can be turned into code units of the __to_encoding object.

1.9. API Reference 161

ztd.text, Release 0.0.0

Remark This functions will call ztd::text::make_encode_state with __to_encoding to create a default
encode_state.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

• __decode_state – [in] The state to use for the decoding portion of the validation check.

template<typename _Input, typename _FromEncoding, typename _ToEncoding>
constexpr auto validate_transcodable_as(_Input &&__input, _FromEncoding &&__from_encoding,

_ToEncoding &&__to_encoding)
Validates the code units of the __input according to the __from_encoding object to see if it can be turned into
code units of the __to_encoding object.

Remark This functions will call ztd::text::make_decode_state with the __from_encoding object to create a
default decode_state to use before passing it to the next overload.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __from_encoding – [in] The encoding to verify can properly encode the input of code units.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

template<typename _Input, typename _ToEncoding>
constexpr auto validate_transcodable_as(_Input &&__input, _ToEncoding &&__to_encoding)

Validates the code units of the __input according to the __from_encoding object to see if it can be turned into
code units of the __to_encoding object.

Remark This functions will call ztd::text::make_encode_state with __to_encoding to create a default
encode_state.

Parameters

• __input – [in] The input range of code units to validate is possible for encoding into code
points.

• __to_encoding – [in] The encoding to verify can properly encode the input of code units.

162 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

1.9.6 Properties and Classifications

code_point

template<typename _Type>

class ztd::text::code_point
Retrieves the code point type for the given type.

Public Types

using type = typename remove_cvref_t<_Type>::code_point
The code point type for the given encoding type. If it does not exist, ztd::text::unicode_code_point
is assumed.

using ztd::text::code_point_t = typename code_point<_Type>::type
A typename alias for ztd::text::code_point.

code_unit

template<typename _Type>

class ztd::text::code_unit
Retrieves the code unit type for the given type.

Public Types

using type = typename remove_cvref_t<_Type>::code_unit
The code unit type for the encoding type.

using ztd::text::code_unit_t = typename code_unit<_Type>::type
A typename alias for ztd::text::code_unit.

decode_state

template<typename _Type>

class ztd::text::decode_state
Retrieves the decode_state of the encoding type if it has one, or the state type of the encoding.

1.9. API Reference 163

ztd.text, Release 0.0.0

Public Types

using type = typename __txt_detail::__decode_state<remove_cvref_t<_Type>>::type
The decode_state type or state type on a given encoding type.

using ztd::text::decode_state_t = typename decode_state<_Type>::type
Typename alias for ztd::text::decode_state.

encode_state

template<typename _Type>

class ztd::text::encode_state
Retrieves the encode_state of the encoding type if it has one, or the state type of the encoding.

Public Types

using type = typename __txt_detail::__encode_state<remove_cvref_t<_Type>>::type
The encode_state type or state type on a given encoding type.

using ztd::text::encode_state_t = typename encode_state<_Type>::type
Typename alias for ztd::text::encode_state.

max_code_points

The maximum number of code points needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_point = ztd::text::code_point_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_code_points_v<ztd::text::utf8>;

std::array<code_point, max_output_size> my_cxx_buffer;
code_point my_c_buffer[max_output_size];

template<typename _Type>

static constexpr ::std::size_t ztd::text::max_code_points_v = _Type::max_code_points
Gets the maximum number of code points that can be produced by an encoding during a decode operation,
suitable for initializing a automatic storage duration (“stack-allocated”) buffer.

max_code_units

The maximum number of code units needed for a given encoding object. This can be used to create a suitably-sized
automatic storage duration buffer, e.g.

using code_unit = ztd::text::code_unit_t<ztd::text::utf8>;
constexpr std::size_t max_output_size = ztd::text::max_code_units_v<ztd::text::utf8>;

// C++-style
std::array<code_unit, max_output_size> my_cxx_buffer;

(continues on next page)

164 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

// or C-style
code_unit my_c_buffer[max_output_size];

template<typename _Type>

static constexpr ::std::size_t ztd::text::max_code_units_v = _Type::max_code_units
Gets the maximum number of code units that can be produced by an encoding during an encode operation,
suitable for initializing a automatic storage duration (“stack-allocated”) buffer.

is_state_independent_v

template<typename _Encoding, typename _Type>

constexpr bool ztd::text::is_state_independent_v = !::std::is_constructible_v<_Type, _Encoding> &&
::std::is_default_constructible_v<_Type>

Whether or not the given type can be constructed without information from the encoding itself.

Remark This value tells users at compile time whether or not they need to be careful with the state. Rather than
let users have to work this independently, two functions — ztd::text::make_encode_state(_Encoding) and
ztd::text::make_encode_state(_Encoding) — handle the details here.

Template Parameters

• _Encoding – The encoding that may contain necessary information.

• _Type – The state type that may need information from the encoding to be successfully
constructed.

is_decode_state_independent_v

template<typename _Encoding>

constexpr bool ztd::text::is_decode_state_independent_v = is_state_independent_v<_Encoding,
decode_state_t<_Encoding>>

Whether or not the encoding’s decode_state can be constructed without information from the encoding itself.

is_encode_state_independent_v

template<typename _Encoding>

constexpr bool ztd::text::is_encode_state_independent_v = is_state_independent_v<_Encoding,
encode_state_t<_Encoding>>

Whether or not the encoding’s decode_state can be constructed without information from the encoding itself.

1.9. API Reference 165

ztd.text, Release 0.0.0

is_decode_injective_v

Looks to see if the decode_one operation on a given encoding type is injective.

This classification checks whether the given encoding type has a type definition called is_decode_injective on it,
and if it does checks to see if its std::true_type. If it’s not present, or if it’s std::false_type, then the encoding
is assumed to NOT be injective.

template<typename _Type>

class is_decode_injective : public __is_decode_injective_sfinae<_Type>
Checks whether or not the decoding step for _Type is injective (cannot possibly lose information regardless of
whatever valid input is put in).

Remark If the encoding object does not define is_decode_injective, it is assumed to be false (the safest default).

tparam _Type The encoding type to check.

template<typename _Type>

constexpr bool ztd::text::is_decode_injective_v = is_decode_injective<_Type>::value
A ::value alias for ztd::text::is_decode_injective.

is_encode_injective_v

Looks to see if the encode_one operation on a given encoding type is injective.

This classification checks whether the given encoding type has a type definition called is_encode_injective on it,
and if it does checks to see if its std::true_type. If it’s not present, or if it’s std::false_type, then the encoding
is assumed to NOT be injective.

template<typename _Type>

class is_encode_injective : public __is_encode_injective_sfinae<_Type>
Checks whether or not the encoding step for _Type is injective (cannot possibly lose information regardless of
whatever valid input is put in).

Remark If the encoding object does not define is_encode_injective, it is assumed to be false (the safest default).

tparam _Type The encoding type to check.

template<typename _Type>

constexpr bool ztd::text::is_encode_injective_v = is_encode_injective<_Type>::value
A ::value alias for ztd::text::is_encode_injective.

166 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

is_code_units_(maybe_)replaceable

These two traits detect whether or not the given Encoding type have calls on them which return ei-
ther a replacement range (is_code_units_repleacable) or a std::optional of a replacement range
(is_code_units_maybe_replaceable).

The former is useful when it is guaranteed that your encoding will have a replacement range on it and does not need
the extra cost of an indirection from not knowing. The latter is useful when something like a wrapped encoding may
or may not have a replacement sequence.

template<typename _Type, typename ..._Args>

class is_code_units_replaceable : public is_detected<__txt_detail::__detect_is_code_units_replaceable, _Type,
_Args...>

Checks whether the given encoding type returns a maybe-replacement range of code units.

Remark The ::value boolean is true if the given _Type has a function named replacement_code_units()
on it that can be called from a const -qualified _Type which returns a contiguous view of code units.

tparam _Type The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_units_replaceable_v = is_code_units_replaceable<_Type,
_Args...>::value

A ::value alias for ztd::text::is_code_units_replaceable.

template<typename _Type, typename ..._Args>

class is_code_units_maybe_replaceable : public
is_detected<__txt_detail::__detect_is_code_units_maybe_replaceable, _Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code units.

Remark The value boolean is true if the given _Type has a function named
maybe_replacement_code_units() on it that can be called from a const -qualified _Type which
returns a std::optional containing a contiguous view of code units.

tparam _Type The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_units_maybe_replaceable_v =
is_code_units_maybe_replaceable<_Type, _Args...>::value

A ::value alias for ztd::text::is_code_units_maybe_replaceable.

1.9. API Reference 167

ztd.text, Release 0.0.0

is_code_points_(maybe_)replaceable

These two traits detect whether or not the given Encoding type have calls on them which return ei-
ther a replacement range (is_code_points_repleacable) or a std::optional of a replacement range
(is_code_points_maybe_replaceable).

The former is useful when it is guaranteed that your encoding will have a replacement range on it and does not need
the extra cost of an indirection from not knowing. The latter is useful when something like a wrapped encoding may
or may not have a replacement sequence.

template<typename _Type, typename ..._Args>

class is_code_points_replaceable : public is_detected<__txt_detail::__detect_is_code_points_replaceable,
_Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code points.

Remark The value boolean is true if the given _Type has a function named replacement_code_points()
on it that can be called from a const -qualified _Type object which returns a contiguous view of code
points.

tparam _Type The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_points_replaceable_v = is_code_points_replaceable<_Type,
_Args...>::value

A ::value alias for ztd::text::is_code_points_replaceable.

template<typename _Type, typename ..._Args>

class is_code_points_maybe_replaceable : public
is_detected<__txt_detail::__detect_is_code_points_maybe_replaceable, _Type, _Args...>

Checks whether the given encoding type returns a maybe-replacement range of code points.

Remark The value boolean is true if the given _Type has a function named
maybe_replacement_code_points() on it that can be called from a const -qualified _Type
object which returns a std::optional containing a contiguous view of code points.

tparam _Type The type to check for the proper function call.

template<typename _Type, typename ..._Args>

constexpr bool ztd::text::is_code_points_maybe_replaceable_v =
is_code_points_maybe_replaceable<_Type, _Args...>::value

A ::value alias for ztd::text::is_code_points_maybe_replaceable.

168 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

is_ignorable_error_handler

template<typename _Type>

class is_ignorable_error_handler : public __is_ignorable_error_handler_sfinae<_Type>
Whether or not the given _Type is an error handler that can be ignored.

Remark An error handler type can mark itself as ignorable by using a using assume_valid =
std::integral_constant<bool, value> where value determines if the type’s error handling callback
can be ignored. This is what ztd::text::assume_valid does. Being configurable means templated error han-
dlers can select whether or not they should be ignorable based on compile time, safe conditions that you
can make up (including checking Macros or other environment data as a means of determining whether or
not validity should be ignored.) If this results in a type derived from std::true_type and the encoder
object using it encounters an error, then it is Undefined Behavior what occurs afterwards.

tparam _Type the Error Handling type to chec.

template<typename _Type>

constexpr bool ztd::text::is_ignorable_error_handler_v = is_ignorable_error_handler<_Type>::value
A ::value alias for ztd::text::is_ignorable_error_handler.

is_unicode_encoding

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

template<typename _Type>

class is_unicode_encoding : public __is_unicode_encoding_sfinae<_Type>
Checks whether or not the encoding has declared it can handle all of Unicode.

Remark If the encoding object does not define is_unicode_encoding, it is assumed to be false (the safest default).

tparam _Type The encoding type to check.

template<typename _Type>

constexpr bool ztd::text::is_unicode_encoding_v = is_unicode_encoding<_Type>::value
A ::value alias for ztd::text::is_unicode_encoding.

1.9. API Reference 169

ztd.text, Release 0.0.0

contains_unicode_encoding

This function determines whether or not the type is or contains a unicode encoding. This means any encoding wherein
the entirety of Unicode, all 21 bits, can be represented without loss of information. For a full list of encodings which
are considered Unicode Encodings by this library, see the Known Unicode Encodings list.

This function checks for 2 things.

• It checks to see if the call encoding.contains_unicode_encoding() is well-formed and returns a boolean
value. If this is the case, it calls encoding.contains_unicode_encoding() and returns that value.

• It looks to see if the provided encoding has a member type called ::is_unicode_encoding. If this is the
case, then it returns is_unicode_encoding_v<Type>.

If none of these work, then it returns false.

template<typename _Encoding>
constexpr bool ztd::text::contains_unicode_encoding(const _Encoding &__encoding) noexcept

Whether or not the provided encoding is a Unicode encoding.

Remark This function first checks if there is a function called contains_unicode_encoding . If it is present,
then it returns the value of that function directly. Otherwise, it checks if ztd::text::is_unicode_encoding_v
is true for the provided __encoding . If that’s the case, then true is returned. Otherwise, it assumes the
encoding is not a Unicode-compatible encoding and returns false.

Parameters __encoding – [in] The encoding to query.

is_unicode_code_point

This checks if the provided type is a unicode_code_point.

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Note there are some expectations of unicode code points. If your type violates these expectations then
code depending on them is free to execute Undefined Behavior.

template<typename _Type>

class is_unicode_code_point : public std::integral_constant<bool, ::std::is_same_v<remove_cvref_t<_Type>,
char32_t> || ::std::is_same_v<remove_cvref_t<_Type>, __txt_impl::__unicode_code_point> ||
is_unicode_scalar_value_v<_Type>>

template<typename _Type>

constexpr bool ztd::text::is_unicode_code_point_v = is_unicode_code_point<_Type>::value

170 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

is_unicode_scalar_value

This checks if the provided type is a unicode_scalar_value.

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Note there are some expectations of scalar value types. If your type violates these expectations then
code depending on them is free to execute Undefined Behavior.

template<typename _Type>

class is_unicode_scalar_value : public std::integral_constant<bool, ::std::is_same_v<remove_cvref_t<_Type>,
__txt_impl::__unicode_scalar_value>>

template<typename _Type>

constexpr bool ztd::text::is_unicode_scalar_value_v = is_unicode_scalar_value<_Type>::value

is_(bitwise_)transcoding_compatible

This classification checks if two encodings are compatible, or bitwise compatible. The heuristic for normal compati-
bility is simple:

• it checks if the two encodings are identical;

• it checks if the two encodings are near-identical derivations of one another (e.g., UTF-8 being converted to
MUTF-8 (but not in the other direction)); or,

• it checks if the code point types between the two encodings are the same, or if they are both some form of unicode
code point.

This type specifically uses the first type as the From encoding (e.g., the one to decode the input code unit sequence)
and the second type as the To encoding (e.g., the one to encode the intermediate decoded code point sequence).

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template
to a definition that derives from std::true_type, or turn it off explicitly by having a definition that derives from
std::false_type. Note that specializing any type not explicitly marked with this notice is Undefined Behavior.

Warning: Specializing this type for types which are not either transcoding compatible or bitwise compatible can
result in Undefined Behavior within the library.

template<typename _From, typename _To>

class is_transcoding_compatible : public std::integral_constant<bool,
__txt_detail::__is_bitwise_transcoding_compatible_v<_From, _To>>

Checks whether or not the specified _From encoding can be transcoded to the _To encoding without invoking a
lossy conversion when using the intermediate code points.

1.9. API Reference 171

ztd.text, Release 0.0.0

Remark First, it checks if the encodings are bitwise compatible with one another (e.g., transcoding ASCII to
UTF-8). If that is not the case, then it checks if the two encodings are just identical. Finally, it checks if
the code point types are the same or if it’s putting unicode scalar values into unicode code points (which is
valid one way, but not the other way since scalar values do not allow surrogates). If none of these are true,
then, the intermediate code point likely cannot convert between the two losslessly.

tparam _From The encoding that is going to decode the input code units into the intermediate code
points.

tparam _To The encoding that is going to encode the intermediate code points into the final code
units.

template<typename _From, typename _To>

constexpr bool ztd::text::is_transcoding_compatible_v = is_transcoding_compatible<_To, _From>::value
A ::value alias for ztd::text::is_transcoding_compatible.

template<typename _From, typename _To>

class is_bitwise_transcoding_compatible : public std::integral_constant<bool,
__txt_detail::__is_bitwise_transcoding_compatible_v<_From, _To>>

Checks whether or not the specified _From encoding can be transcoded to the _To encoding without by form of
bit copying.

tparam _From The encoding that is going to decode the input code units into the intermediate code
points.

tparam _To The encoding that is going to encode the intermediate code points into the final code
units.

template<typename _From, typename _To>

constexpr bool ztd::text::is_bitwise_transcoding_compatible_v =
is_bitwise_transcoding_compatible<_From, _To>::value

A ::value alias for ztd::text::is_transcoding_compatible.

default_code_point_encoding

Picks the default encoding for the given code point type. In all cases, this just points a given code point type to
ztd::text::utf8. Errors if there is no default association.

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template.
Your specialization must have a type definition named type (as in, using type = ...; or typedef . . . type;`) inside
of the class specialization that is public:ly accessible. Note that specializing any type not explicitly marked with this
notice is Undefined Behavior.

template<typename _Type>

class default_code_point_encoding : public __default_code_point_encoding<_Type, false>
The default encoding associated with a given code point type, that serves as either input to an encode operation
or output from decode operation.

tparam _Type The code point type, with no cv-qualifiers

172 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

using ztd::text::default_code_point_encoding_t = typename default_code_point_encoding<_Type>::type
A typename alias for ztd::text::default_code_point_encoding.

Template Parameters _Type – The code point type, with no cv-qualifiers

template<typename _Type>

class default_consteval_code_point_encoding : public __default_code_point_encoding<_Type, true>
The default encoding associated with a given code point type, that serves as either input to an encode operation
or output from decode operation. This uses additional information that this is at compile time, not run time, to
help make a decision as to what to do.

tparam _Type The code point type, with no cv-qualifiers

using ztd::text::default_consteval_code_point_encoding_t = typename
default_consteval_code_point_encoding<_Type>::type

A typename alias for ztd::text::default_consteval_code_point_encoding.

Template Parameters _Type – The code point type, with no cv-qualifiers

default_code_unit_encoding

Picks the default encoding for the given code unit type (for both run time, and compile time with the appropriately
selected version of this property). The default association table is below. Errors if there is no default association.

Note: User Specializations: XXX Okay! You can add other types to this classification by specializing the class template.
Your specialization must have a type definition named type (as in, using type = ...; or typedef . . . type;`) inside
of the class specialization that is public:ly accessible. Note that specializing any type not explicitly marked with this
notice is Undefined Behavior.

Type Encoding
signed char ztd::text::basic_ascii<signed char>
char ztd::text::execution
char (compile time) ztd::text::literal
wchar_t ztd::text::wide_execution
wchar_t (compile time) ztd::text::wide_literal
char8_t ztd::text::basic_utf8<char8_t>
ztd::uchar8_t ztd::text::basic_utf8<uchar8_t>
std::byte ztd::text::basic_utf8<std::byte>
char16_t ztd::text::utf16
char32_t ztd::text::utf32

template<typename _Type>

class default_code_unit_encoding : public __default_code_unit_encoding<_Type, false>
The default encoding associated with a given code unit type, that serves as either input to a decode operation or
output from an encode operation.

tparam _Type The code unit type, with no cv-qualifiers

1.9. API Reference 173

ztd.text, Release 0.0.0

using ztd::text::default_code_unit_encoding_t = typename default_code_unit_encoding<_Type>::type
A typename alias for ztd::text::default_code_unit_encoding.

Template Parameters _Type – The code unit type, with no cv-qualifiers

template<typename _Type>

class default_consteval_code_unit_encoding : public __default_code_unit_encoding<_Type, true>
The default encoding associated with a given code unit type, that serves as either input to a decode operation or
output from an encode operation. This uses the additional information that this is compiletime, not runtime, to
help make the decision on what to do.

tparam _Type The code unit type, with no cv-qualifiers

using ztd::text::default_consteval_code_unit_encoding_t = typename
default_consteval_code_unit_encoding<_Type>::type

A typename alias for ztd::text::default_consteval_code_unit_encoding.

Template Parameters _Type – The code unit type, with no cv-qualifiers

1.9.7 Result Types, Status Codes and Quality Aides

encoding_error

enum ztd::text::encoding_error
Describes a failure to encode, decode, transcode, or count, for four core various reasons.

Remark This does not cover specific failures, like if a sequence was overlong (e.g., UTF-8) or if an encode
operation produced an uunpaired surrogate value (e.g. UTF-16).

Values:

enumerator ok
The okay status; everything is fine.

Remark This does not necessarily mean an error handler was not called. An error handler
can set the error code to ztd::text::encoding_error::ok after performing corrective action: see
ztd::text::replacement_handler_t for an example.

enumerator invalid_sequence
Input contains ill-formed sequences. This means there were available units of input to read, but what was
read resulted in an error.

enumerator incomplete_sequence
Input contains incomplete sequences. This means that the input was exhausted, without finding an invalid
sequence, and therefore more input may be required.

174 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark Depending on context, this may or may not be an error in your use case (e.g., reading part of an
incomplete network buffer and waiting for more). See ztd::text::incomplete_handler as a way to aid
with this use case.

enumerator insufficient_output_space
Output cannot receive the successfully encoded or decoded sequence. This means that, while there were
no invalid or incomplete sequences in the input, the output ran out of space to receive it.

Remark Provide a bigger storage area or guarantee that it meets the minimum required size for potential
output. This can be queried for an encoding by using ztd::text::max_code_points_v<the_encoding>
for code points, and ztd::text::max_code_units_v<the_encoding> for code units.

inline constexpr ::std::string_view ztd::text::to_name(encoding_error __error_code)
Converts an encoding_error to a string value.

Remark If a value outside of the allowed encoding_error is passed, then undefined behavior happens.

Returns A null-terminated string_view to the data.

text_tag

A tag type used explicitly for extension points.

template<typename ..._Args>

class text_tag
A text_tag type, useful in helping to constrain extension points and more.

Remark The text_tag type will always be used

tparam _Args The types to be used as part of the tagging mechanism. As this is variadic, allows no
classes to be passed.

make_decode_state

This detects when the decode_state of a given encoding requires the encoding itself to make said state. If so, it
will call the decode_state‘s constructor with the encoding passed in. Otherwise, it simply default-constructs a state.
In either case, the constructed value is returned to the user.

The classification for this is done by ztd::text::is_decode_state_independent.

template<typename _Encoding>
constexpr decode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_decode_state(_Encoding

&__encoding)
noexcept

Constructs the decode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_decode_state_independent_v.

Parameters __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

template<typename _Encoding>

1.9. API Reference 175

ztd.text, Release 0.0.0

constexpr decode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_decode_state_with(_Encoding
&__encoding,
const en-
code_state_t<remove_cvref_t<_Encoding>>
&__en-
code_state)
noexcept

Constructs the decode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_decode_state_independent_v or whether it can be created by copy construction from the
given __encode_state.

Parameters

• __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

• __encode_state – [in] A preexisting state from the encoder.

make_encode_state

This detects when the encode_state of a given encoding requires the encoding itself to make said state. If so, it
will call the encode_state‘s constructor with the encoding passed in. Otherwise, it simply default-constructs a state.
In either case, the constructed value is returned to the user.

The classification for this is done by ztd::text::is_encode_state_independent.

template<typename _Encoding>
constexpr encode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_encode_state(_Encoding

&__encoding)
noexcept

Constructs the encode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_encode_state_independent_v.

Parameters __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

template<typename _Encoding>
constexpr encode_state_t<remove_cvref_t<_Encoding>> ztd::text::make_encode_state_with(_Encoding

&__encoding,
const de-
code_state_t<remove_cvref_t<_Encoding>>
&__de-
code_state)
noexcept

Constructs the encode_state of the given encoding, based on whether or not the encoding and state meet the
criteria of ztd::text::is_encode_state_independent_v or whether it can be created by copy construction from the
given __decode_state.

Parameters

• __encoding – [in] The encoding object to use, if applicable, for the construction of the
state.

• __decode_state – [in] A preexisting state from the decoder.

176 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

unicode_code_point

If ZTD_TEXT_UNICODE_CODE_POINT_DISTINCT_TYPE is turned on, this type definition points to an internal
class which implements the invariant of being a unicode code point. Otherwise, it is simply char32_t.

A unicode code point is stored as an at least 32-bit value, but may occupy more space depending on the architecture.
It requires 21 bits of space to fit the required unicode code point definition. If the distinct type is used, then this type
will trap (abort/assert) if the value is greater than the allowed 21 bits.

typedef char32_t ztd::text::unicode_code_point

Internal Type

Warning: Names with double underscores, and within the __detail and __impl namespaces are reserved for
the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any point
in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

class ztd::text::__txt_impl::__unicode_code_point
A 32-bit value that is within the allowed 21 bits of Unicode. Can be one of the surrogate values.

Public Functions

__unicode_code_point() noexcept = default
Constructs a code point value of indeterminate value (if no parentheses/brackets are provided) or with the
value 0 (if parentheses/brackets are provided for intentional value initialization).

inline constexpr __unicode_code_point(char32_t __code_point) noexcept
Constructs a code point value with the given code point value.

Remark

inline explicit constexpr operator char32_t() const noexcept
An explicit conversion to a typical char32_t value, bit-compatible with a normal code point value.

inline constexpr const char32_t &value() const & noexcept
Retrieves the underlying value.

inline constexpr char32_t &value() & noexcept
Retrieves the underlying value.

inline constexpr char32_t &&value() && noexcept
Retrieves the underlying value.

1.9. API Reference 177

ztd.text, Release 0.0.0

unicode_scalar_value

If ZTD_TEXT_UNICODE_SCALAR_VALUE_DISTINCT_TYPE is turned on, this type definition points to an internal
class which implements the invariant of being a unicode scalar value. Otherwise, it is simply char32_t.

A unicode scalar value is stored as an at least 32-bit value, but may occupy more space depending on the architecture.
It requires 21 bits of space to fit the required unicode code point definition. If the distinct type is used, then this type
will trap (abort/assert) if the value is greater than the allowed 21 bits, or if the value results in one of the Unicode
Surrogate Pair values used for UTF-16 encoding and decoding. Not recommended for ztd::text::wtf8 usage, as that
encoding produces Unicode Surrogate Pair values intentionally.

typedef char32_t ztd::text::unicode_scalar_value

Internal Type

Warning: Names with double underscores, and within the __detail and __impl namespaces are reserved for
the implementation. Referencing this entity directly is bad, and the name/functionality can be changed at any point
in the future. Relying on anything not guaranteed by the documentation is Undefined Behavior.

class ztd::text::__txt_impl::__unicode_scalar_value
A 32-bit value that is within the allowed 21 bits of Unicode and is not one of the Surrogate values.

Remark The invariant is enforced with an assertion in normal modes, and can optionally be enforced by turning
on ZTD_TEXT_UNICODE_SCALAR_VALUE_INVARIANT_ABORT.

Public Functions

__unicode_scalar_value() noexcept = default
Constructs a scalar value of indeterminate value (if no parentheses/brackets are provided) or with the value
0 (if parentheses/brackets are provided for intentional value initialization).

inline constexpr __unicode_scalar_value(char32_t __code_point) noexcept
Constructs a scalar value with the given code point value.

Remark

inline explicit constexpr operator char32_t() const noexcept
An explicit conversion to a typical char32_t value, bit-compatible with a normal code point value.

inline constexpr const char32_t &value() const & noexcept
Retrieves the underlying value.

inline constexpr char32_t &value() & noexcept
Retrieves the underlying value.

inline constexpr char32_t &&value() && noexcept
Retrieves the underlying value.

178 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

stateless_decode_result

template<typename _Input, typename _Output>

class ztd::text::stateless_decode_result
The result of all decode operations from encoding objects and higher-level calls (such as ztd_text_decode).

Subclassed by decode_result< _Input, _Output, _State >

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr stateless_decode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_decode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::decode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_decode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __handled_errors)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> && ::std::is_nothrow_constructible_v<_Output,
_ArgOutput>)

Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decode operation, taken as the first of either
the decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

1.9. API Reference 179

ztd.text, Release 0.0.0

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

decode_result

template<typename _Input, typename _Output, typename _State>

class ztd::text::decode_result : public ztd::text::stateless_decode_result<_Input, _Output>
The result of all decode operations from encoding objects and higher-level calls (such as ztd_text_decode).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr decode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code = encoding_error::ok)
Constructs a ztd::text::decode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the decode operation.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr decode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __handled_errors)
Constructs a ztd::text::decode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the decode operation.

180 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

• __error_code – [in] The error code for the decode operation, taken as the first of either
the decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

Public Members

::ztd::reference_wrapper<_State> state
The state of the associated Encoding used for decoding input code units to code points.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_encode_result

template<typename _Input, typename _Output>

class ztd::text::stateless_encode_result
The result of all encode operations from encoding objects and higher-level calls (such as ztd_text_encode).

Subclassed by encode_result< _Input, _Output, _State >

Public Functions

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_encode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_encode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::encode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

1.9. API Reference 181

ztd.text, Release 0.0.0

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_encode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code, ::std::size_t __handled_errors)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> && ::std::is_nothrow_constructible_v<_Output,
_ArgOutput>)

Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, if any.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

182 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

encode_result

template<typename _Input, typename _Output, typename _State>

class ztd::text::encode_result : public ztd::text::stateless_encode_result<_Input, _Output>
The result of all encode operations from encoding objects and higher-level calls (such as ztd_text_encode).

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr encode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code = encoding_error::ok)
Constructs a ztd::text::encode_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the encode operation.

• __error_code – [in] The error code for the decoding opertion, if any.

template<typename _ArgInput, typename _ArgOutput, typename _ArgState>
inline constexpr encode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __handled_errors)
Constructs a ztd::text::encode_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __state – [in] The state related to the Encoding that performed the encode operation.

• __error_code – [in] The error code for the encode operation, if any.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

1.9. API Reference 183

ztd.text, Release 0.0.0

Public Members

_State &state
The state of the associated Encoding used for decoding input code points to code units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_transcode_result

template<typename _Input, typename _Output>

class ztd::text::stateless_transcode_result
The result of transcoding operations (such as ztd_text_transcode) that specifically do not include a reference to
the state.

Subclassed by transcode_result< _Input, _Output, _FromState, _ToState >

Public Functions

template<typename _ArgInput, typename _ArgOutput>
inline constexpr stateless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,

encoding_error __error_code = encoding_error::ok) noex-
cept(noexcept(stateless_transcode_result(::std::forward<_ArgInput>(__input),
::std::forward<_ArgOutput>(__output), __error_code,
__error_code != encoding_error::ok)))

Constructs a ztd::text::stateless_transcode_result, defaulting the error code to
ztd::text::encoding_error::ok if not provided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgOutput>

184 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

inline constexpr stateless_transcode_result(_ArgInput &&__input, _ArgOutput &&__output,
encoding_error __error_code, ::std::size_t
__handled_errors)
noexcept(::std::is_nothrow_constructible_v<_Input,
_ArgInput> &&
::std::is_nothrow_constructible_v<_Output, _ArgOutput>)

Constructs a ztd::text::stateless_transcode_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

transcode_result

template<typename _Input, typename _Output, typename _FromState, typename _ToState>

class ztd::text::transcode_result : public ztd::text::stateless_transcode_result<_Input, _Output>
The result of transcoding operations (such as ztd_text_transcode).

1.9. API Reference 185

ztd.text, Release 0.0.0

Public Functions

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState>
inline constexpr transcode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgFromState

&&__from_state, _ArgToState &&__to_state, encoding_error
__error_code = encoding_error::ok)

Constructs a ztd::text::transcode_result, defaulting the error code to ztd::text::encoding_error::ok if not
provided.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgOutput, typename _ArgFromState, typename
_ArgToState>
inline constexpr transcode_result(_ArgInput &&__input, _ArgOutput &&__output, _ArgFromState

&&__from_state, _ArgToState &&__to_state, encoding_error
__error_code, ::std::size_t __handled_errors)

Constructs a ztd::text::transcode_result with the provided parameters and information, including whether
or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __output – [in] The output range to store.

• __from_state – [in] The state related to the “From Encoding” that performed the decode
half of the operation.

• __to_state – [in] The state related to the “To Encoding” that performed the encode half
of the operation.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

186 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Members

::ztd::reference_wrapper<_FromState> from_state
A reference to the state of the associated Encoding used for decoding input code units to intermediate code
points.

::ztd::reference_wrapper<_ToState> to_state
A reference to the state of the associated Encoding used for encoding intermediate code points to code
units.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

_Output output
The reconstructed output_view object, with its .begin() incremented by the number of code units success-
fully written (can be identical to .begin() on original range on failure).

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_count_result

template<typename _Input>

class ztd::text::stateless_count_result
The result of counting operations (such as ztd_text_count_as_encoded and ztd_text_count_as_encoded) that
specifically do not include a reference to the state.

Subclassed by count_result< _Input, _State >, count_transcode_result< _Input, _FromState, _ToState >

Public Functions

template<typename _ArgInput>
inline constexpr stateless_count_result(_ArgInput &&__input, ::std::size_t __count, encoding_error

__error_code = encoding_error::ok)
Constructs a ztd::text::stateless_count_result, defaulting the error code to ztd::text::encoding_error::ok if
not provided.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput>

1.9. API Reference 187

ztd.text, Release 0.0.0

inline constexpr stateless_count_result(_ArgInput &&__input, ::std::size_t __count, encoding_error
__error_code, ::std::size_t __handled_errors)

Constructs a ztd::text::stateless_count_result with the provided parameters and information, including
whether or not an error was handled.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

::std::size_t count
The number of code units or code points counted successfully, so far.

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

count_result

template<typename _Input, typename _State>

class ztd::text::count_result : public ztd::text::stateless_count_result<_Input>
The result of counting operations (such as ztd_text_count_as_encoded and ztd_text_count_as_encoded).

188 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Public Functions

template<typename _ArgInput, typename _ArgState>
inline constexpr count_result(_ArgInput &&__input, ::std::size_t __count, _ArgState &&__state,

encoding_error __error_code = encoding_error::ok)
Constructs a ztd::text::count_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __state – [in] The state related to the encoding for the counting operation.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

template<typename _ArgInput, typename _ArgState>
inline constexpr count_result(_ArgInput &&__input, ::std::size_t __count, _ArgState &&__state,

encoding_error __error_code, ::std::size_t __handled_errors)
Constructs a ztd::text::count_result with the provided parameters and information, including whether or
not an error was handled.

Parameters

• __input – [in] The input range to store.

• __count – [in] The number of code points or code units successfully counted.

• __state – [in] The state related to the encode operation that counted the code units.

• __error_code – [in] The error code for the encode operation, taken as the first of either
the encode or decode operation that failed.

• __handled_errors – [in] Whether or not an error was handled. Some error handlers are
corrective (see ztd::text::replacement_handler_t), and so the error code is not enough to
determine if the handler was invoked. This allows the value to be provided directly when
constructing this result type.

inline constexpr bool errors_were_handled() const noexcept
Whether or not any errors were handled.

Returns Simply checks whether handled_errors is greater than 0.

Public Members

::ztd::reference_wrapper<_State> state
A reference to the state of the associated Encoding used for counting.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

::std::size_t count
The number of code units or code points counted successfully, so far.

1.9. API Reference 189

ztd.text, Release 0.0.0

encoding_error error_code
The kind of error that occured, if any.

::std::size_t handled_errors
Whether or not the error handler was invoked, regardless of if the error_code is set or not set to
ztd::text::encoding_error::ok.

stateless_validate_result

template<typename _Input>

class ztd::text::stateless_validate_result
The result of valdation operations (such as ztd_text_validate_decodable_as and ztd_text_validate_encodable_as)
that specifically do not include a reference to the state.

Subclassed by validate_result< _Input, _State >, validate_transcode_result< _Input, _DecodeState, _En-
codeState >

Public Functions

template<typename _ArgInput>
inline constexpr stateless_validate_result(_ArgInput &&__input, bool __is_valid)

Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns Whether or not the result is valid or not.

Public Members

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

190 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

validate_result

template<typename _Input, typename _State>

class ztd::text::validate_result : public ztd::text::stateless_validate_result<_Input>
The result of validation operations (such as ztd_text_validate_decodable_as and
ztd_text_validate_encodable_as).

Public Functions

template<typename _ArgInput, typename _ArgState>
inline constexpr validate_result(_ArgInput &&__input, bool __is_valid, _ArgState &&__state)

Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

• __state – [in] The state related to the encoding that was used to do validation.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns Whether or not the result is valid or not.

Public Members

::ztd::reference_wrapper<_State> state
A reference to the state of the associated Encoding used for validating the input.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

validate_transcode_result

template<typename _Input, typename _DecodeState, typename _EncodeState>

class ztd::text::validate_transcode_result : public ztd::text::stateless_validate_result<_Input>
The result of a transcoding validation operations (e.g. from ztd_text_validate_transcodable_as).

1.9. API Reference 191

ztd.text, Release 0.0.0

Public Functions

template<typename _ArgInput, typename _ArgFromState, typename _ArgToState>
inline constexpr validate_transcode_result(_ArgInput &&__input, bool __is_valid, _ArgFromState

&&__from_state, _ArgToState &&__to_state)
Constructs a ztd::text::validate_result, defaulting the error code to ztd::text::encoding_error::ok if not pro-
vided.

Parameters

• __input – [in] The input range to store.

• __is_valid – [in] Whether or not the validation succeeded.

• __from_state – [in] The state related to the encoding that was used to do validation.

• __to_state – [in] The state related to the encoding that was used to do validation.

inline explicit constexpr operator bool() const noexcept
A conversion for use in if statements and conditional operators.

Returns Whether or not the result is valid or not.

Public Members

::ztd::reference_wrapper<_DecodeState> from_state
A reference to the state of the associated Encoding used for validating the input.

::ztd::reference_wrapper<_EncodeState> to_state
A reference to the state of the associated Encoding used for validating the input.

_Input input
The reconstructed input_view object, with its .begin() incremented by the number of code units successfully
read (can be identical to .begin() on original range on failure).

bool valid
Whether or not the specified input is valid or not.

propagate_error

This helper function processes an error for a transcoding operation and shuffles a result through its decode step and
encode step error handlers. Nominally used after a solely decode portion of a transcode operation fails.

If the user is doing a direct conversion and can simply call the encode portion of the error handler directly, calling this
function can be skipped entirely by the user.

template<typename _Result, typename _Output, typename _ToEncoding, typename _EncodeErrorHandler,
typename _ToState, typename _ToInputProgress, typename _ToOutputProgress, typename _Input,
typename _Intermediate, typename _FromState>
constexpr auto propagate_error(_Output &&__output, _ToEncoding &&__to_encoding, decode_result<_Input,

_Intermediate, _FromState> &&__result, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state, _ToInputProgress
&&__to_input_progress, _ToOutputProgress &&__to_output_progress)

Transcoding helper. Takes the given __to_encoding and __encode_error_handler and launders the failed
ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the desired
ztd::text::transcode_result type.

192 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Remark This function is a helper whose sole purpose is to ensure that the other half of error handling is called
by transcode-style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode).
This function attempts to take care of any unread/unwritten characters and other minor points in its pursuit
of properly making sure the error manifests on the other side.

Template Parameters _Result – The exact transcode result type to use.

Parameters

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __result – [in] The result value that has an error on it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

template<typename _Output, typename _ToEncoding, typename _EncodeErrorHandler, typename _ToState,
typename _ToInputProgress, typename _ToOutputProgress, typename _Input, typename _Intermediate,
typename _FromState>
constexpr auto propagate_error(_Output &&__output, _ToEncoding &&__to_encoding, decode_result<_Input,

_Intermediate, _FromState> &&__result, _EncodeErrorHandler
&&__encode_error_handler, _ToState &__to_state, _ToInputProgress
&&__to_input_progress, _ToOutputProgress &&__to_output_progress)

Takes the given __to_encoding and __encode_error_handler and launders the failed
ztd::text::decode_result through it, producing a ztd::text::encode_result and transforming that into the
desired ztd::text::transcode_result type.

Remark This function is a helper whose sole purpose is to ensure that the other half of error handling is called
by transcode-style functions written by the end user (e.g., writing overriding hooks for ztd::text::transcode).
This function attempts to take care of any unread/unwritten characters and other minor points in its pursuit
of properly making sure the error manifests on the other side. Unlike it’s counterpart, this function does not
take an _Result template parameter and instead deduces the returned transcode result type from inputs.

Parameters

• __output – [in] The output view to be writing into.

• __to_encoding – [in] The desired encoding that performs the encode portion of the
transcoding step.

• __result – [in] The result value that has an error on it.

• __encode_error_handler – [in] The error handler to mill the __result and other rele-
vant information through.

• __to_state – [in] The current state of the encoding step of the transcode operation.

1.9. API Reference 193

ztd.text, Release 0.0.0

• __to_input_progress – [in] Any unread output characters in any intermediate between
the (failed) decode and encode operations.

• __to_output_progress – [in] Any unread output characters in any intermediates between
the (failed) decode and encode operations.

1.10 Progress & Future Work

This is where the status and progress of the library will be kept up to date. You can also check the Issue Tracker for
specific issues and things being worked on! We also maintain a very large list of encodings, so you can check if a
specific encoding you are looking for is supported (and if you will need to implement an Encoding Object for it).

1.10.1 Copyable State

Right now, all state parameters are assumed to be move-only. This is detrimental to creating cheap views like .
code_points() on basic_text_view, and harms other types as well. Work should be done either to make copyable
state, or allow passing state in more effectively (we currently do the passing technique at the moment).

• Do all states need to be copyable? Can it be done selectively? (At the moment: basic_text_view and
text_view very well may need it, and as more Shift-State encodings become a part of the library, even more
need. . .)

1.10.2 Transcoding Iterators/Transcode View

Right now these types would not work especially well for input and output ranges. They should be modified
just like the internal ztd::text::__txt_detail::__encoding_iterator class types, so that they work with
input_iterator and output_iterator types.

• Improve constructor delegation and make sure to explicitly implement default construction vs. letting it happen
with =default (which does not work for some of the base types present).

• Modify implementation to cache data and position when an input or output iterator is detected.

• Return const value_type& for reference to enable C++20 ranges to work properly.

• Mark as enable_borrowed_range when C++20 is detected.

1.10.3 Normalization

ztd::text::nfkd/nfk/nfc/nfkc/fcc are all skeletons right now that need to be filled out for the purposes of giving
this library normalization views.

• nfkc

• nfc

• nfkd

• nfd

• Hook up to basic_text_view and basic_text when finished

194 Chapter 1. Who Is This Library For?

https://github.com/soasis/text/issues

ztd.text, Release 0.0.0

1.10.4 basic_text_view

ztd::text::basic_text_view<Encoding, NormalizationForm, Range, ...> is to be the premiere view for
looking at text and preserving both the normalization and encoding form during insertion and erasure. It is not fully
implemented yet, even though basic skeletons exist for it in the code base.

• Grapheme Cluster Iterators

• Code Point iterators

• Grapheme Cluster Iterators

• Comparison operators (If the normalization form is the same and is_bitwise_transcoding_compatible, then
memcmp. If just normalization form and encoding is same, memcmp. Otherwise, code point by code point com-
parison.)

1.10.5 basic_text

ztd::text::basic_text<Encoding, NormalizationForm, Storage, ...> is to be the premiere container for
storing text and preserving both the normalization and encoding form during insertion and erasure. It is not fully
implemented yet, even though basic skeletons exist for it in the code base.

• Code Point iterators/ranges

• Grapheme Cluster Iterators

• Comparison operators (If the normalization form is the same and is_bitwise_transcoding_compatible, then
memcmp. If just normalization form and encoding is same, memcmp. Otherwise, code point by code point com-
parison.)

• Insertion (Fast normalization-preserving splicing/inserting algorithm)

• Deletion

• Converting Constructors between compatible types (errors the same way lossy conversion protection describes
if they are not compatible, forcing a user to pass in an error handler.)

1.10.6 iconv

There should be an encoding that loads iconv dynamically from the system, if it is present, before using it to do
conversions.

1.10.7 cuneicode

There should be a cuneicode-based encoding, for the update C implementation of all of these things.

1.10. Progress & Future Work 195

ztd.text, Release 0.0.0

1.11 Benchmarks (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

It’s probably fine for now.

Probably!

1.12 Licenses, Thanks and Attribution

ztd.text is dual-licensed under either the Apache 2 License, or a corporate license if you bought it with special
support. See the LICENSE file or your copy of the corporate license agreement for more details!

1.12.1 Third-party Dependencies and Code

All third-party code is listed in the NOTICE file. It is also reproduced here. In particular:

• Martin Moene; span-lite (Boost 1.0 License) - Code included directly and made available if a C++20 is
not present.

We thank Martin Moene for their hard work.

1.12.2 Previous and Related Works

Previous attempts at text and text handling libraries were made by various authors. We note them here:

• Tom Honermann; text_view.

• Zach Laine; Boost.Text.

• Henri Sivonen; encoding_rs.

• rmf; libogonek.

Their work was groundbreaking when it first came about and employed similar concepts found in this library. We thank
them for their efforts in moving Text Encoding, Unicode, and Systems Programming forward.

1.12.3 Helping Hands

Whether it’s just a little bit of time, a point towards the right direction, or some ideas, this library builds upon a lot of
collective knowledge and effort. Here we list some of the filks who have spent some time doing this best to make sure
we have the greatest text library on the planet for C++:

• CopperSpice; Talking over many of their design struggles with trying to make better text in CopperSpice/Qt
(https://www.youtube.com/watch?v=w_kD-qAkoH0)

• Luna & Lambda Kitten: Kick-starting better support for Clang / Apple (https://twitter.com/lambdakitten/status/
1418240846638485510)

• Much of rmf and Henri Sivonen’s writings and thoughts on the subjects of Unicode.

• All of Tom Honermann’s previous work on Unicode, Text Processing, and Standardization.

196 Chapter 1. Who Is This Library For?

https://github.com/martinmoene/span-lite
https://github.com/tahonermann/text_view
https://github.com/tzlaine/text
https://github.com/hsivonen/encoding_rs
https://github.com/libogonek/ogonek
https://www.youtube.com/watch?v=w_kD-qAkoH0
https://github.com/lunasorcery
https://github.com/emilazy
https://twitter.com/lambdakitten/status/1418240846638485510
https://twitter.com/lambdakitten/status/1418240846638485510
https://hsivonen.fi/
https://github.com/tahonermann

ztd.text, Release 0.0.0

1.12.4 Charitable Contributions

ztd.text has been made possible by charitable contributions from patrons and sponsors around the world:

• Shepherd’s Oasis, LLC (https://soasis.org)

• Jane Lusby

• Orfeas Zafeiris

• Tom Honermann

• Lily Foster

• Camilla Löwy

• Leonardo Lima

• Piotr Piatkowski

• Cynthia Coan

• Johan Andersson

• Erekose Craft

• Christopher Crouzet

• Michael Schellenberger Costa

• Turig Eret

• Brent Beer

• Matt Godbolt

• Erica Brescia

• Carol Chen

• Jeremy Jung

• Max Stoiber

• Evan Lock

• Anil Kumar

• Vincent Weevers

• Ólafur Waage

• Jeff Trull

• Davide Faconti

• Anthony Nandaa

• Christ Drozdowski

• Douglas Creager

• superfunc

• Michael Caisse

• Joshua Fisher

• Billy O’Neal

• Sy Brand

1.12. Licenses, Thanks and Attribution 197

https://soasis.org

ztd.text, Release 0.0.0

• Eric Tremblay

• Michał Dominiak

• Zach Toogood

• beluga

• Alex Gilding

• Kirk Shoop

• Alex Hadd

• Jimmy “junoravin”

• Joel Falcou

• Pascal Menuet

• Elias Daler

• Randomnetcat

• Robert Maynard

• Martin Hořeňovský

• Hana Dusíková

• 7 more private sponsors

• And many, many more!

(If you are new to being a patron, sponsor, or donator and you don’t see your name here, I may have bungled the export
list, so please e-mail opensource@soasis.org!)

1.13 Bibliography

These are all the resources that this documentation links to, in alphabetical order.

encoding_rs Henri Sivonen. “encoding_rs”. February 2021. URL: https://github.com/libogonek/ogonek. A Rust
library for performing encoding and decoding tasks. Takes a byte-based approach to handling encodings and
decodings. The developer of this library worked on text for a very long time on Mozilla Firefox, and has great
insight into the field of text on their blog, https://hsivonen.fi.

Fast UTF-8 Bob Steagall. “Fast Conversion from UTF-8 with C++, DFAs, and SSE Intrinsics”. September 26th,
2019. URL: https://www.youtube.com/watch?v=5FQ87-Ecb-A. This presentation demonstrates one of the ways
an underlying fast decoder for UTF-8 can be written, rather than just letting the default work. This work can be
hooked into the conversion function extension points location.

Fast UTF-8 Validation Daniel Lemire. “Ridiculously fast unicode (UTF-8) validation”. October 20th, 2020. URL:
https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/. This blog post is one of many
that presents a faster, more optimized way to validate that UTF-8 is in its correcty form.

glibc-25744 Tom Honermann and Carlos O’Donnell. mbrtowc with Big5-HKSCS returns 2 instead of 1 when con-
suming the second byte of certain double byte characters. https://sourceware.org/bugzilla/show_bug.cgi?id=
25744. This bug report details the problem with the C standard library’s ability to handle multiwide characters.
This problem is also present in the “1:N” and “N:1” rules in the C++ standard library.

iconv Bruno Haible and Daiki Ueno. libiconv. August 2020. URL: https://savannah.gnu.org/git/?group=libiconv. A
software library for working with and converting text. Typically ships on most, if not all, POSIX and Linux
systems.

198 Chapter 1. Who Is This Library For?

mailto:opensource@soasis.org
https://github.com/libogonek/ogonek
https://hsivonen.fi
https://www.youtube.com/watch?v=5FQ87-Ecb-A
https://lemire.me/blog/2020/10/20/ridiculously-fast-unicode-utf-8-validation/
https://sourceware.org/bugzilla/show_bug.cgi?id=25744
https://sourceware.org/bugzilla/show_bug.cgi?id=25744
https://savannah.gnu.org/git/?group=libiconv
https://www.gnu.org/software/libiconv/
https://www.gnu.org/software/libiconv/

ztd.text, Release 0.0.0

ICU Unicode Consortium. “International Components for Unicode”. April 17th, 2019. URL: https://github.com/
hsivonen/encoding_rs The premiere library for not only performing encoding conversions, but performing other
Unicode-related algorithms on sequences of text.

libogonek

R. Martinho Fernandes. “libogonek: A C++11 Library for Unicode”. September 29th, 2019. URL: http:
//site.icu-project.org/ One of the first influential C++11 libraries to bring the concept of iterators and ranges
to not only encoding, but normalization and others. It’s great design was only limited by how incapable
C++11 as a language was for what its author was trying to do.

n2282 Philip K. Krause. “N2282 - Additional multibyte/wide string conversion functions”. June 2018. URL: http://
www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm. This paper attempted to add a few unicode functions
to the list of things to do without changing anything.

Non-Unicode in C++ Henri Sivonen. “P0244 - Text_view: A C++ concepts and range based character encoding and
code point enumeration library”. URL: https://hsivonen.fi/non-unicode-in-cpp/. A rebuttal to P0244’s “strong
code points” and “strong code units” opinion. This is talked about in depth in the design documentation for
strong vs. weak code point and code unit types.

p0244 Tom Honermann. “P0244 - Text_view: A C++ concepts and range based character encoding and code point
enumeration library”. URL: https://wg21.link/p0244. A C++ proposal written by Tom Honermann, proposing
some of the first ideas for an extensible text encoding interface and lightweight ranges built on top of that.
Reference implementation: https://github.com/tahonermann/text_view.

p1041

R. Martinho Fernandes. “P1041: Make char16_t/char32_t string literals be UTF-16/32”. February 2019.
URL: https://wg21.link/p1041. This accepted paper enabled C++ to strongly associate all char16_t and
char32_t string literals with UTF-16 and UTF-32. This is not the case for C.

1.13. Bibliography 199

https://github.com/hsivonen/encoding_rs
https://github.com/hsivonen/encoding_rs
http://site.icu-project.org/
http://site.icu-project.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm
https://hsivonen.fi/non-unicode-in-cpp/
https://wg21.link/p0244
https://github.com/tahonermann/text_view
https://wg21.link/p1041

ztd.text, Release 0.0.0

200 Chapter 1. Who Is This Library For?

CHAPTER

TWO

INDICES & SEARCH

2.1 Index

201

ztd.text, Release 0.0.0

202 Chapter 2. Indices & Search

INDEX

Symbols
__execution_mac_os (C++ class), 85
__execution_mac_os::code_point (C++ type), 85
__execution_mac_os::code_unit (C++ type), 85
__execution_mac_os::decode_one (C++ function),

86, 87
__execution_mac_os::decode_state (C++ type), 85
__execution_mac_os::encode_one (C++ function),

86, 87
__execution_mac_os::encode_state (C++ type), 85
__execution_mac_os::is_decode_injective

(C++ type), 86
__execution_mac_os::is_encode_injective

(C++ type), 86
__execution_mac_os::is_unicode_encoding

(C++ type), 85
__execution_mac_os::max_code_points (C++

member), 87
__execution_mac_os::max_code_units (C++ mem-

ber), 87
__unicode_code_point (C++ class), 177
__unicode_code_point::__unicode_code_point

(C++ function), 177
__unicode_code_point::operator char32_t

(C++ function), 177
__unicode_code_point::value (C++ function), 177
__unicode_scalar_value (C++ class), 178
__unicode_scalar_value::__unicode_scalar_value

(C++ function), 178
__unicode_scalar_value::operator char32_t

(C++ function), 178
__unicode_scalar_value::value (C++ function),

178
__wide_execution_cwchar (C++ class), 101
__wide_execution_cwchar::code_point (C++

type), 101
__wide_execution_cwchar::code_unit (C++ type),

101
__wide_execution_cwchar::contains_unicode_encoding

(C++ function), 102
__wide_execution_cwchar::decode_one (C++

function), 103

__wide_execution_cwchar::decode_state (C++
type), 101

__wide_execution_cwchar::encode_one (C++
function), 102

__wide_execution_cwchar::encode_state (C++
type), 101

__wide_execution_cwchar::is_decode_injective
(C++ type), 101

__wide_execution_cwchar::is_encode_injective
(C++ type), 102

__wide_execution_cwchar::is_unicode_encoding
(C++ type), 102

__wide_execution_cwchar::max_code_points
(C++ member), 103

__wide_execution_cwchar::max_code_units
(C++ member), 103

__wide_execution_iso10646 (C++ class), 104
__wide_execution_iso10646::code_point (C++

type), 104
__wide_execution_iso10646::code_unit (C++

type), 104
__wide_execution_iso10646::decode_one (C++

function), 104, 105
__wide_execution_iso10646::decode_state

(C++ type), 104
__wide_execution_iso10646::encode_one (C++

function), 105, 106
__wide_execution_iso10646::encode_state

(C++ type), 104
__wide_execution_iso10646::is_decode_injective

(C++ type), 104
__wide_execution_iso10646::is_encode_injective

(C++ type), 104
__wide_execution_iso10646::is_unicode_encoding

(C++ type), 104
__wide_execution_iso10646::max_code_points

(C++ member), 105
__wide_execution_iso10646::max_code_units

(C++ member), 105
__wide_execution_iso10646::state (C++ type),

105

203

ztd.text, Release 0.0.0

A
any_byte_encoding (C++ class), 68
any_byte_encoding::any_byte_encoding (C++

function), 69, 70
any_byte_encoding::code_point (C++ type), 69
any_byte_encoding::code_unit (C++ type), 69
any_byte_encoding::contains_unicode_encoding

(C++ function), 71
any_byte_encoding::decode_one (C++ function), 71
any_byte_encoding::decode_state (C++ type), 69
any_byte_encoding::encode_one (C++ function), 72
any_byte_encoding::encode_state (C++ type), 69
any_byte_encoding::is_decode_injective (C++

type), 69
any_byte_encoding::is_encode_injective (C++

type), 69
any_byte_encoding::max_code_points (C++ mem-

ber), 72
any_byte_encoding::max_code_units (C++ mem-

ber), 72
any_byte_encoding::maybe_replacement_code_points

(C++ function), 71
any_byte_encoding::maybe_replacement_code_units

(C++ function), 71
any_byte_encoding::operator= (C++ function), 70,

71
any_encoding (C++ type), 68
any_encoding_with (C++ class), 72
any_encoding_with::any_decode_state (C++

class), 76
any_encoding_with::any_decode_state::any_decode_state

(C++ function), 76
any_encoding_with::any_decode_state::operator=

(C++ function), 76
any_encoding_with::any_encode_state (C++

class), 76
any_encoding_with::any_encode_state::any_encode_state

(C++ function), 77
any_encoding_with::any_encode_state::operator=

(C++ function), 77
any_encoding_with::any_encoding_with (C++

function), 74
any_encoding_with::code_point (C++ type), 73
any_encoding_with::code_unit (C++ type), 73
any_encoding_with::contains_unicode_encoding

(C++ function), 75
any_encoding_with::decode_one (C++ function), 75
any_encoding_with::decode_state (C++ type), 73
any_encoding_with::encode_one (C++ function), 76
any_encoding_with::encode_state (C++ type), 73
any_encoding_with::is_decode_injective (C++

type), 74
any_encoding_with::is_encode_injective (C++

type), 73

any_encoding_with::max_code_points (C++ mem-
ber), 76

any_encoding_with::max_code_units (C++ mem-
ber), 76

any_encoding_with::maybe_replacement_code_points
(C++ function), 75

any_encoding_with::maybe_replacement_code_units
(C++ function), 75

any_encoding_with::operator= (C++ function), 74
ascii (C++ member), 77
ascii_t (C++ type), 77
assume_valid_handler (C++ member), 111
assume_valid_handler_t (C++ class), 112
assume_valid_handler_t::assume_valid (C++

type), 112
assume_valid_handler_t::operator() (C++ func-

tion), 112

B
basic_ascii (C++ class), 77
basic_ascii::code_point (C++ type), 78
basic_ascii::code_unit (C++ type), 78
basic_ascii::decode_one (C++ function), 78
basic_ascii::encode_one (C++ function), 79
basic_ascii::is_decode_injective (C++ type), 78
basic_ascii::is_encode_injective (C++ type), 78
basic_ascii::max_code_points (C++ member), 79
basic_ascii::max_code_units (C++ member), 79
basic_ascii::replacement_code_units (C++

function), 78
basic_ascii::state (C++ type), 78
basic_count_as_decoded (C++ function), 119
basic_count_as_encoded (C++ function), 122
basic_count_as_transcoded (C++ function), 124
basic_decode_into (C++ function), 130
basic_encode_into (C++ function), 137
basic_mutf8 (C++ class), 91
basic_mutf8::code_point (C++ type), 92
basic_mutf8::code_unit (C++ type), 92
basic_mutf8::decode_one (C++ function), 92
basic_mutf8::decode_state (C++ type), 91
basic_mutf8::encode_one (C++ function), 92
basic_mutf8::encode_state (C++ type), 91
basic_mutf8::is_decode_injective (C++ type), 92
basic_mutf8::is_encode_injective (C++ type), 92
basic_mutf8::is_unicode_encoding (C++ type), 91
basic_mutf8::max_code_points (C++ member), 93
basic_mutf8::max_code_units (C++ member), 93
basic_text (C++ class), 56
basic_text::base (C++ function), 57, 58
basic_text::code_points (C++ function), 57
basic_text::encoding_type (C++ type), 57
basic_text::error_handler_type (C++ type), 57
basic_text::normalization_type (C++ type), 57

204 Index

ztd.text, Release 0.0.0

basic_text::range_type (C++ type), 57
basic_text::state_type (C++ type), 57
basic_text_view (C++ class), 58
basic_text_view::base (C++ function), 60
basic_text_view::code_points (C++ function), 59
basic_text_view::encoding_type (C++ type), 59
basic_text_view::error_handler_type (C++

type), 59
basic_text_view::normalization_type (C++

type), 59
basic_text_view::range_type (C++ type), 59
basic_text_view::state_type (C++ type), 59
basic_transcode_into (C++ function), 144
basic_utf16 (C++ class), 93
basic_utf16::code_point (C++ type), 94
basic_utf16::code_unit (C++ type), 94
basic_utf16::decode_one (C++ function), 94
basic_utf16::encode_one (C++ function), 94
basic_utf16::is_decode_injective (C++ type), 94
basic_utf16::is_encode_injective (C++ type), 94
basic_utf16::is_unicode_encoding (C++ type), 94
basic_utf16::max_code_points (C++ member), 95
basic_utf16::max_code_units (C++ member), 95
basic_utf16::state (C++ type), 94
basic_utf16_be (C++ type), 80
basic_utf16_le (C++ type), 80
basic_utf16_ne (C++ type), 80
basic_utf32 (C++ class), 95
basic_utf32::code_point (C++ type), 96
basic_utf32::code_unit (C++ type), 96
basic_utf32::decode_one (C++ function), 96
basic_utf32::encode_one (C++ function), 97
basic_utf32::is_decode_injective (C++ type), 96
basic_utf32::is_encode_injective (C++ type), 96
basic_utf32::is_unicode_encoding (C++ type), 96
basic_utf32::max_code_points (C++ member), 97
basic_utf32::max_code_units (C++ member), 97
basic_utf32::state (C++ type), 96
basic_utf32_be (C++ type), 80
basic_utf32_le (C++ type), 80
basic_utf32_ne (C++ type), 81
basic_utf8 (C++ class), 98
basic_utf8::code_point (C++ type), 98
basic_utf8::code_unit (C++ type), 98
basic_utf8::decode_one (C++ function), 99
basic_utf8::decode_state (C++ type), 98
basic_utf8::encode_one (C++ function), 99
basic_utf8::encode_state (C++ type), 98
basic_utf8::is_decode_injective (C++ type), 98
basic_utf8::is_encode_injective (C++ type), 98
basic_utf8::is_unicode_encoding (C++ type), 98
basic_utf8::max_code_points (C++ member), 100
basic_utf8::max_code_units (C++ member), 100
basic_validate_decodable_as (C++ function), 156

basic_validate_encodable_as (C++ function), 158
basic_validate_transcodable_as (C++ function),

161
basic_wtf8 (C++ class), 109
basic_wtf8::code_point (C++ type), 110
basic_wtf8::code_unit (C++ type), 110
basic_wtf8::decode_one (C++ function), 111
basic_wtf8::decode_state (C++ type), 110
basic_wtf8::encode_one (C++ function), 110
basic_wtf8::encode_state (C++ type), 110
basic_wtf8::is_decode_injective (C++ type), 110
basic_wtf8::is_encode_injective (C++ type), 110
basic_wtf8::is_unicode_encoding (C++ type), 110
basic_wtf8::max_code_points (C++ member), 111
basic_wtf8::max_code_units (C++ member), 111

C
character, 4
code point, 4
code unit, 4
code_point (C++ class), 163
code_point::type (C++ type), 163
code_point_t (C++ type), 163
code_unit (C++ class), 163
code_unit::type (C++ type), 163
code_unit_t (C++ type), 163
contains_unicode_encoding (C++ function), 170
count_as_decoded (C++ function), 119, 120
count_as_encoded (C++ function), 122, 123
count_as_transcoded (C++ function), 125–128
count_result (C++ class), 188
count_result::count (C++ member), 189
count_result::count_result (C++ function), 189
count_result::error_code (C++ member), 189
count_result::errors_were_handled (C++ func-

tion), 189
count_result::handled_errors (C++ member), 190
count_result::input (C++ member), 189
count_result::state (C++ member), 189

D
decode, 4
decode (C++ function), 133–135
decode_into (C++ function), 130–132
decode_result (C++ class), 180
decode_result::decode_result (C++ function), 180
decode_result::error_code (C++ member), 181
decode_result::errors_were_handled (C++ func-

tion), 181
decode_result::handled_errors (C++ member),

181
decode_result::input (C++ member), 181
decode_result::output (C++ member), 181
decode_result::state (C++ member), 181

Index 205

ztd.text, Release 0.0.0

decode_state (C++ class), 163
decode_state::type (C++ type), 164
decode_state_t (C++ type), 164
decode_to (C++ function), 132, 133
decode_view (C++ class), 60
decode_view::begin (C++ function), 62
decode_view::decode_view (C++ function), 61, 62
decode_view::encoding_type (C++ type), 61
decode_view::end (C++ function), 62
decode_view::error_handler_type (C++ type), 61
decode_view::iterator (C++ type), 61
decode_view::operator= (C++ function), 62
decode_view::range_type (C++ type), 61
decode_view::sentinel (C++ type), 61
decode_view::state_type (C++ type), 61
default_code_point_encoding (C++ class), 172
default_code_point_encoding_t (C++ type), 172
default_code_unit_encoding (C++ class), 173
default_code_unit_encoding_t (C++ type), 173
default_consteval_code_point_encoding (C++

class), 173
default_consteval_code_point_encoding_t

(C++ type), 173
default_consteval_code_unit_encoding (C++

class), 174
default_consteval_code_unit_encoding_t (C++

type), 174
default_handler (C++ member), 112
default_handler_t (C++ class), 112
default_handler_t::error_handler (C++ type),

113
default_handler_t::operator() (C++ function),

113

E
encode, 4
encode (C++ function), 140–142
encode_into (C++ function), 137–139
encode_result (C++ class), 183
encode_result::encode_result (C++ function), 183
encode_result::error_code (C++ member), 184
encode_result::errors_were_handled (C++ func-

tion), 183
encode_result::handled_errors (C++ member),

184
encode_result::input (C++ member), 184
encode_result::output (C++ member), 184
encode_result::state (C++ member), 184
encode_state (C++ class), 164
encode_state::type (C++ type), 164
encode_state_t (C++ type), 164
encode_to (C++ function), 139, 140
encode_view (C++ class), 63
encode_view::begin (C++ function), 65

encode_view::encode_view (C++ function), 64, 65
encode_view::encoding_type (C++ type), 63
encode_view::end (C++ function), 65
encode_view::error_handler_type (C++ type), 63
encode_view::iterator (C++ type), 63
encode_view::operator= (C++ function), 65
encode_view::range_type (C++ type), 63
encode_view::sentinel (C++ type), 63
encode_view::state_type (C++ type), 63
encoding, 4
encoding_error (C++ enum), 174
encoding_error::incomplete_sequence (C++ enu-

merator), 174
encoding_error::insufficient_output_space

(C++ enumerator), 175
encoding_error::invalid_sequence (C++ enumer-

ator), 174
encoding_error::ok (C++ enumerator), 174
encoding_rs, 198
encoding_scheme (C++ class), 81
encoding_scheme::base (C++ function), 82
encoding_scheme::code_point (C++ type), 81
encoding_scheme::code_unit (C++ type), 81
encoding_scheme::contains_unicode_encoding

(C++ function), 83
encoding_scheme::decode_one (C++ function), 83
encoding_scheme::decode_state (C++ type), 81
encoding_scheme::encode_one (C++ function), 83
encoding_scheme::encode_state (C++ type), 82
encoding_scheme::encoding_type (C++ type), 81
encoding_scheme::is_decode_injective (C++

type), 82
encoding_scheme::is_encode_injective (C++

type), 82
encoding_scheme::max_code_points (C++ mem-

ber), 84
encoding_scheme::max_code_units (C++ member),

84
encoding_scheme::maybe_replacement_code_points

(C++ function), 83
encoding_scheme::maybe_replacement_code_units

(C++ function), 83
encoding_scheme::replacement_code_points

(C++ function), 82
encoding_scheme::replacement_code_units

(C++ function), 82
execution (C++ member), 84
execution encoding, 4
execution_t (C++ type), 85

F
Fast UTF-8, 198
Fast UTF-8 Validation, 198

206 Index

ztd.text, Release 0.0.0

G
glibc-25744, 198
grapheme cluster, 4

I
iconv, 198
ICU, 199
incomplete_handler (C++ class), 113
incomplete_handler::base (C++ function), 114
incomplete_handler::code_points (C++ function),

115
incomplete_handler::code_units (C++ function),

115
incomplete_handler::error_handler (C++ type),

114
incomplete_handler::incomplete_handler (C++

function), 114
incomplete_handler::operator() (C++ function),

114, 115
injective, 4
is_bitwise_transcoding_compatible (C++ class),

172
is_bitwise_transcoding_compatible_v (C++

member), 172
is_code_points_maybe_replaceable (C++ class),

168
is_code_points_maybe_replaceable_v (C++ mem-

ber), 168
is_code_points_replaceable (C++ class), 168
is_code_points_replaceable_v (C++ member), 168
is_code_units_maybe_replaceable (C++ class),

167
is_code_units_maybe_replaceable_v (C++ mem-

ber), 167
is_code_units_replaceable (C++ class), 167
is_code_units_replaceable_v (C++ member), 167
is_decode_injective (C++ class), 166
is_decode_injective_v (C++ member), 166
is_decode_state_independent_v (C++ member),

165
is_encode_injective (C++ class), 166
is_encode_injective_v (C++ member), 166
is_encode_state_independent_v (C++ member),

165
is_ignorable_error_handler (C++ class), 169
is_ignorable_error_handler_v (C++ member), 169
is_state_independent_v (C++ member), 165
is_transcoding_compatible (C++ class), 171
is_transcoding_compatible_v (C++ member), 172
is_unicode_code_point (C++ class), 170
is_unicode_code_point_v (C++ member), 170
is_unicode_encoding (C++ class), 169
is_unicode_encoding_v (C++ member), 169
is_unicode_scalar_value (C++ class), 171

is_unicode_scalar_value_v (C++ member), 171

L
libogonek, 199
literal (C++ member), 88
literal encoding, 4
literal_t (C++ class), 89
literal_t::code_point (C++ type), 89
literal_t::code_unit (C++ type), 89
literal_t::decode_one (C++ function), 90
literal_t::decode_state (C++ type), 89
literal_t::encode_one (C++ function), 90
literal_t::encode_state (C++ type), 89
literal_t::is_decode_injective (C++ type), 89
literal_t::is_encode_injective (C++ type), 89
literal_t::is_unicode_encoding (C++ type), 89
literal_t::literal_t (C++ function), 89
literal_t::max_code_points (C++ member), 91
literal_t::max_code_units (C++ member), 91
literal_t::operator= (C++ function), 89, 90
ltext (C++ type), 58
ltext_view (C++ type), 60

M
make_decode_state (C++ function), 175
make_decode_state_with (C++ function), 175
make_encode_state (C++ function), 176
make_encode_state_with (C++ function), 176
max_code_points_v (C++ member), 164
max_code_units_v (C++ member), 165
mojibake, 5
mutf8 (C++ member), 91
mutf8_t (C++ type), 91

N
n2282, 199
Non-Unicode in C++, 199

P
p0244, 199
p1041, 199
pass_handler (C++ member), 116
pass_handler_t (C++ class), 116
propagate_error (C++ function), 192, 193

R
replacement_handler (C++ member), 116
replacement_handler_t (C++ class), 116
replacement_handler_t::operator() (C++ func-

tion), 117

S
stateless_count_result (C++ class), 187

Index 207

ztd.text, Release 0.0.0

stateless_count_result::count (C++ member),
188

stateless_count_result::error_code (C++ mem-
ber), 188

stateless_count_result::errors_were_handled
(C++ function), 188

stateless_count_result::handled_errors (C++
member), 188

stateless_count_result::input (C++ member),
188

stateless_count_result::stateless_count_result
(C++ function), 187

stateless_decode_result (C++ class), 179
stateless_decode_result::error_code (C++

member), 180
stateless_decode_result::errors_were_handled

(C++ function), 179
stateless_decode_result::handled_errors

(C++ member), 180
stateless_decode_result::input (C++ member),

180
stateless_decode_result::output (C++ member),

180
stateless_decode_result::stateless_decode_result

(C++ function), 179
stateless_encode_result (C++ class), 181
stateless_encode_result::error_code (C++

member), 182
stateless_encode_result::errors_were_handled

(C++ function), 182
stateless_encode_result::handled_errors

(C++ member), 182
stateless_encode_result::input (C++ member),

182
stateless_encode_result::output (C++ member),

182
stateless_encode_result::stateless_encode_result

(C++ function), 181, 182
stateless_transcode_result (C++ class), 184
stateless_transcode_result::error_code (C++

member), 185
stateless_transcode_result::errors_were_handled

(C++ function), 185
stateless_transcode_result::handled_errors

(C++ member), 185
stateless_transcode_result::input (C++ mem-

ber), 185
stateless_transcode_result::output (C++ mem-

ber), 185
stateless_transcode_result::stateless_transcode_result

(C++ function), 184
stateless_validate_result (C++ class), 190
stateless_validate_result::input (C++ mem-

ber), 190

stateless_validate_result::operator bool
(C++ function), 190

stateless_validate_result::stateless_validate_result
(C++ function), 190

stateless_validate_result::valid (C++ mem-
ber), 190

T
text (C++ type), 58
text_tag (C++ class), 175
text_view (C++ type), 60
throw_handler (C++ member), 117
throw_handler_t (C++ class), 118
throw_handler_t::operator() (C++ function), 118
to_name (C++ function), 175
transcode, 5
transcode (C++ function), 152–155
transcode_into (C++ function), 145–148
transcode_result (C++ class), 185
transcode_result::error_code (C++ member), 187
transcode_result::errors_were_handled (C++

function), 186
transcode_result::from_state (C++ member), 187
transcode_result::handled_errors (C++ mem-

ber), 187
transcode_result::input (C++ member), 187
transcode_result::output (C++ member), 187
transcode_result::to_state (C++ member), 187
transcode_result::transcode_result (C++ func-

tion), 186
transcode_to (C++ function), 148–151
transcode_view (C++ class), 65
transcode_view::begin (C++ function), 67
transcode_view::end (C++ function), 68
transcode_view::from_encoding_type (C++ type),

66
transcode_view::from_error_handler_type

(C++ type), 66
transcode_view::from_state_type (C++ type), 66
transcode_view::iterator (C++ type), 66
transcode_view::range_type (C++ type), 66
transcode_view::sentinel (C++ type), 66
transcode_view::to_encoding_type (C++ type), 66
transcode_view::to_error_handler_type (C++

type), 66
transcode_view::to_state_type (C++ type), 66
transcode_view::transcode_view (C++ function),

66, 67

U
u16text (C++ type), 58
u16text_view (C++ type), 60
u32text (C++ type), 58
u32text_view (C++ type), 60

208 Index

ztd.text, Release 0.0.0

u8text (C++ type), 58
u8text_view (C++ type), 60
unicode code point, 5
unicode scalar value, 5
unicode_code_point (C++ type), 177
unicode_scalar_value (C++ type), 178
utf16 (C++ member), 93
utf16_be_t (C++ type), 80
utf16_le_t (C++ type), 80
utf16_ne_t (C++ type), 80
utf16_t (C++ type), 93
utf32 (C++ member), 95
utf32_be_t (C++ type), 80
utf32_le_t (C++ type), 80
utf32_ne_t (C++ type), 81
utf32_t (C++ type), 95
utf8 (C++ member), 97
utf8_t (C++ type), 97

V
validate_decodable_as (C++ function), 156, 157
validate_encodable_as (C++ function), 159, 160
validate_result (C++ class), 191
validate_result::input (C++ member), 191
validate_result::operator bool (C++ function),

191
validate_result::state (C++ member), 191
validate_result::valid (C++ member), 191
validate_result::validate_result (C++ func-

tion), 191
validate_transcodable_as (C++ function), 161, 162
validate_transcode_result (C++ class), 191
validate_transcode_result::from_state (C++

member), 192
validate_transcode_result::input (C++ mem-

ber), 192
validate_transcode_result::operator bool

(C++ function), 192
validate_transcode_result::to_state (C++

member), 192
validate_transcode_result::valid (C++ mem-

ber), 192
validate_transcode_result::validate_transcode_result

(C++ function), 192

W
wide execution encoding, 5
wide literal encoding, 5
wide_execution (C++ member), 100
wide_execution_t (C++ type), 100
wide_literal (C++ member), 107
wide_literal_t (C++ class), 107
wide_literal_t::code_point (C++ type), 107
wide_literal_t::code_unit (C++ type), 107

wide_literal_t::decode_one (C++ function), 108
wide_literal_t::decode_state (C++ type), 107
wide_literal_t::encode_one (C++ function), 108
wide_literal_t::encode_state (C++ type), 107
wide_literal_t::is_decode_injective (C++

type), 107
wide_literal_t::is_encode_injective (C++

type), 107
wide_literal_t::is_unicode_encoding (C++

type), 107
wide_literal_t::max_code_points (C++ member),

109
wide_literal_t::max_code_units (C++ member),

109
wide_literal_t::operator= (C++ function), 108
wide_literal_t::wide_literal_t (C++ function),

108
wltext (C++ type), 58
wltext_view (C++ type), 60
wtext (C++ type), 58
wtext_view (C++ type), 60
wtf8 (C++ member), 109
wtf8_t (C++ type), 109

Index 209

	Who Is This Library For?
	🔨 Getting Started (In Progress)
	🔨 Quick ‘n’ Dirty Tutorial (In Progress)
	Users in the Wild
	Glossary of Terms & Definitions
	Design Goals and Philosophy
	First Principles - “Lucky 7” and a Liberation-First Design
	Lucky 7
	Breaking it Down
	Result Types
	Error Handlers

	Liberation Achieved

	Lost Information
	“UTF-8 Everywhere!!”
	Fighting Code Rot

	Error Handling
	Error Handler Anatomy
	First Parameter
	Second Parameter
	Third Parameter
	Fourth Parameter
	Secret Type Definition

	Writing A Handler
	Lossy Operation Protection

	Converting, Counting, and Validating Text
	Encode
	Decode
	Transcode
	Validate Encodable
	Validate Decodable
	Validate Decodable
	Count as Decoded
	Count as Encoded
	Count as Transcoded

	Strong vs. Weak Code Units/Points and Legacy Encodings
	The Case for Strength
	The Counterpoint
	Allow Both, Prefer One
	Leaving Room
	In Sum

	Lucky 7 Extension - Beyond the Basics
	Separate Encode/Decode States
	Injective: Promoting Safety in Encodings
	Replacement Characters
	Always Has A Replacement
	Maybe Has A Replacement
	The Default

	Marking an encoding as Unicode-Capable
	compile time
	Run-time

	Encoding-Dependent States
	Need for Speed: Extension Points
	Extension points: Arguments
	Extension Points: Forms & Return Types
	text_decode
	text_encode
	text_transcode
	text_transcode_one
	text_validate_encodable_as_one
	text_validate_decodable_as_one
	text_validate_transcodable_as_one
	text_validate_encodable_as
	text_validate_decodable_as
	text_count_as_encoded_one
	text_count_as_decoded_one
	text_count_as_encoded
	text_count_as_decoded

	That’s All of Them

	Available Encodings
	Known Unicode Encodings
	Configuring the Library
	API Reference
	Containers
	🔨 basic_text (In Progress)

	Views
	🔨 basic_text_view (In Progress)
	decode_view
	encode_view
	transcode_view

	Encodings
	any_encoding
	Base Template

	any_encoding_with
	ASCII
	Base Template

	🔨 cuneicode_encoding (In Progress)
	Encoding Scheme
	Aliases
	Base Template

	Execution
	Internal Types
	MacOS-based

	🔨 iconv_encoding (In Progress)
	Literal
	Modified UTF-8
	Base Template

	UTF-16
	Base Template

	UTF-32
	Base Template

	UTF-8
	Base Template

	Wide Execution
	Internal Type
	<cwchar>-based
	MacOS-based

	Wide Literal
	WTF-8
	Base Template

	Error Handlers
	assume_valid_handler
	default_handler
	incomplete_handler
	pass_handler
	replacement_handler
	throw_handler

	Conversion and Counting Functions
	count_as_decoded
	Functions

	count_as_encoded
	Functions

	count_as_transcoded
	Functions

	decode
	Named Groups
	decode(...)
	decode_to(...)
	decode_into(...)

	For Everything
	Functions

	encode
	Named Groups
	encode(...)
	encode_to(...)
	encode_into(...)

	For Everything
	Functions

	transcode
	Named Groups
	transcode(...)
	transcode_to(...)
	transcode_into(...)

	For Everything
	Functions

	validate_decodable_as
	Functions

	validate_encodable_as
	Functions

	validate_transcodable_as
	Functions

	Properties and Classifications
	code_point
	code_unit
	decode_state
	encode_state
	max_code_points
	max_code_units
	is_state_independent_v
	is_decode_state_independent_v
	is_encode_state_independent_v
	is_decode_injective_v
	is_encode_injective_v
	is_code_units_(maybe_)replaceable
	is_code_points_(maybe_)replaceable
	is_ignorable_error_handler
	is_unicode_encoding
	contains_unicode_encoding
	is_unicode_code_point
	is_unicode_scalar_value
	is_(bitwise_)transcoding_compatible
	default_code_point_encoding
	default_code_unit_encoding

	Result Types, Status Codes and Quality Aides
	encoding_error
	text_tag
	make_decode_state
	make_encode_state
	unicode_code_point
	Internal Type

	unicode_scalar_value
	Internal Type

	stateless_decode_result
	decode_result
	stateless_encode_result
	encode_result
	stateless_transcode_result
	transcode_result
	stateless_count_result
	count_result
	stateless_validate_result
	validate_result
	validate_transcode_result
	propagate_error

	Progress & Future Work
	Copyable State
	Transcoding Iterators/Transcode View ✅
	Normalization
	basic_text_view
	basic_text
	iconv
	cuneicode

	🔨 Benchmarks (In Progress)
	Licenses, Thanks and Attribution
	Third-party Dependencies and Code
	Previous and Related Works
	Helping Hands
	Charitable Contributions

	Bibliography

	Indices & Search
	Index

	Index

