ztd.text
Release 0.0.0

ThePhD & Shepherd's Oasis, LLC

Aug 13, 2021

CONTENTS:

1 Who Is This Library For? 3
2 Indices & Search 201

Index 203

ztd.text, Release 0.0.0

The premiere library for handling text in different encoding forms and reducing transcoding bugs in your C++ software.

CONTENTS: 1

ztd.text, Release 0.0.0

2 CONTENTS:

CHAPTER
ONE

WHO IS THIS LIBRARY FOR?

If:
* you want to convert from one Unicode encoding to another Unicode encoding;
* you want a no-overhead way to track and keep data in a specific encoding (Unicode-based or not);
* you want a no-memory-overhead way to archive;
* you want to prevent data in the wrong encoding from infiltrating your application and causing Mojibake;

* you want to work with higher-level primitives (code points, graphames) when iterating text that do not break
your text apart;

* you want safe defaults for working with text;

then ztd. text is for you!

1.1 Getting Started (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

1.2 Quick ‘n’ Dirty Tutorial (In Progress)

Warning: This isn’t finished yet! Come check back by the next major or minor version update.

1.3 Users in the Wild

None have come and told us about their usage, yet!

If you use the library to any success, please do not hesitate to reach out to opensource @soasis.org!

https://en.wikipedia.org/wiki/Mojibake
mailto:opensource@soasis.org

ztd.text, Release 0.0.0

1.4 Glossary of Terms & Definitions

Occasionally, we may need to use precise language to describe what we want. This contains a list of definitions that can
be linked to from the documentation to help describe key concepts that are useful for the explication of the concepts
and ideas found in this documentation.

character This word carries with it 2 meanings, thanks to C-style languages and their predecessors. Sometimes, chars,
wchar_ts, char8_ts, and similar are called “narrow character”s, “wide character”s, “UTF-8 characters” and
similar. This is the result of a poor legacy in software and hardware nomenclature. These are not character types,
but rather types that _may_ represent the abstract notion of a character but frequently, and often, do not. After
all, you wouldn’t be here reading this if it did and non-English wasn’t busted in your application, now would you?

The other definition is just an abstract unit of information in human languages and writing. The closest approxi-
mation that Unicode has for the human language/writing character is a Grapheme Cluster.

code point A single unit of decoded information. Most typically associated with unicode code points, but they can be
other things such as unicode scalar values or even a 13-bit value.

Note that a single code point does not imply a “character”, as that is a complex entity in human language and
writing that cannot be mapped easily to a single unit of decoded information.

code unit A single unit of encoded information. This is typically, 8-, 16-, or 32-bit entites arranged in some sequential
fashion that, when read or treated in a certain manner, end up composing higher-level units which make up
readable text. Much of the world’s most useful encodings that encode text use multiple code units in sequence
to give a specific meaning to something, which makes most encodings variable length encodings.

decode Converting from a stream of input, typically code units, to a stream of output, typically code points. The output
is generally in a form that is more widely consummable or easier to process than when it started. Frequently, this
library expects and works with the goal that any decoding process is producing unicode code points or unicode
scalar values from some set of code units.

encode Converting from a stream of input, typically code points, to a stream of output, typically code units. The
output may be less suitable for general interchange or consumption, or is in a specific interchange format for the
interoperation. Frequently, this library expects and works with the goal that any decoding process is producing
unicode code points or unicode scalar values from some set of code units.

encoding A set of functionality that includes an encode process or a decode process (or both). The encode process
takes in a stream of code points and puts out a stream of code units. The decode process takes in a stream of
code units and puts out a stream of code points. In a concrete sense, there are a number of additional operations
an encoding needs: see the Lucky 7 design concept.

execution encoding The locale-based encoding related to “multibyte characters” (C and C++ magic words) processed
during program evaluation/execution. It is directly related to the std: :set_locale(LC_CTYPE, ...) calls.
Note that this is different from literal encoding, which is the encoding of string literals. The two may not be (and
many times, are not) the same.

grapheme cluster The closest the Unicode Standard gets to recognizing a human-readable and writable character,
grapheme cluster’s are arbitrarily sized bundles of unicode code points that compose of a single concept that
might match what a “character” is in any given human language.

injective An operation which can map all input information to an output. This is used for this library, particularly, to
determine whether an operation is lossy (loses information) or not. For example, UTF-8 to UTF-32 is an injective
operation because the values in a UTF-8 encoding are preserved in a UTF-32 encoding. UTF-16 to GB18030 is
also an injective operation. But, converting something like Latin-1 to ASCII is a lossy operation, or UTF-8 to
SHIFT-JIS.

literal encoding The encoding of string literals ("") during constant evaluation. This is usually controlled by com-
mand line arguments (MSVC and GCC) or fixed during compilation (Clang as UTF-8, though that may change).
Typically defaults to the system’s “locale” setting.

4 Chapter 1. Who Is This Library For?

https://reviews.llvm.org/D88741#2352203

ztd.text, Release 0.0.0

mojibake (Japanese: Pronunciation: [modibake] “unintelligible sequence of characters”.) From Japanese (moji),

meaning “character” and (bake), meaning change, is an occurence of incorrect unreadable characters displayed
when computer software fails to render text correctly to its associated character encoding.

transcode Converting from one form of encoded information to another form of encoded information. In the context

of this library, it means going from an input in one encoding’s code units to an output of another encoding’s code
units. Typically, this is done by invoking the decode of the original encoding to reach a common interchange
format (such as unicode code points) before taking that intermediate output and piping it through the encode step
of the other encoding. Different transcode operations may not need to go through a common interchange, and
may transcode “directly”, as a way to improve space utilization, time spent, or both.

unicode code point A single unit of decoded information for Unicode. It represents the smallest, non-encoded, and

indivisible piece of information that can be used to talk about higher level algorithms, properties, and more from
the Unicode Standard.

A unicode code point has been reserved to take at most 21 bits of space to identify itself.

A single unicode code point is NOT equivalent to a character, and multiple of them can be put together or taken
apart and still have their sequence form a “character”. For a more holistic, human-like interpretation of code
points or other data, see grapheme clusters.

unicode scalar value A single unit of decoded information for Unicode. It’s definition is identical to that of unicode

code points, with the additional constraint that every unicode scalar value may not be a “Surrogate Value”.
Surrogate values are non-characters used exclusively for the purpose of encoding and decoding specific sequences
of code units, and therefore carry no useful meaning in general interchange. They may appear in text streams in
certain encodings: see Wobbly Transformation Format-8 (WTF-8) for an example.

wide execution encoding The locale-based encoding related to “wide characters” (C and C++ magic words) process-

ing during program evaluation/execution. It is directly related to the std::set_locale(LC_CTYPE, ...)
calls. Note that this is different from the wide literal encoding, which is the encoding of wide string literals. The
two may not be (and many times, are not) the same. Nominally, wide string literals are usually not like this, but
there are a handful of compilers were they use neither UTF-16 or UTF-32 as the wide execution encoding, and
instead use, for example, EUC-TW.

wide literal encoding The encoding of wide string literals (L"") during constant evaluation. This is usually controlled

1.5

by command line arguments (GCC) or fixed during compilation (Clang as UTF-32, though that may change).
Typically defaults to the system’s “locale” setting.

Design Goals and Philosophy

The goal of this library are to

enable people to write new code that can properly handle encoded information, specifically text;
offer them effective means to convert that information in various ways;
impose no run-time overhead compared to writing the code by hand; and

statically track encodings, where possible, to make lossless or bad conversions a compile time error rather than
a runtime problem;

These four goals inform the design of the library to its deepest levels and helps us go through the following important
tenents:

1.5. Design Goals and Philosophy 5

https://en.wikipedia.org/wiki/Extended_Unix_Code#EUC-TW
https://reviews.llvm.org/D88741#2352203

ztd.text, Release 0.0.0

1.5.1 First Principles - “Lucky 7” and a Liberation-First Design

One of the core premises of this library is that any text in one encoding can be converted to another, without having to
know anything about external encodings. This is how the library achieves infinite extensibility! We start by noting that
almost any encoding conversion can be done so long as there is an intermediary that exists between the source and the
destination. For encoded text, this is the line between code units (code_unit for code) and code points (code_point
for code).

Code units are single elements of a linear sequence of encoded information. That could be a sequence of bytes, a
sequence of 16-bit numbers, and more. A sequence of code units is typically specific to the encoding it has and is
generally impossible to reason about in a general or generic sense.

Code points are single elements of a linear sequence of information that have been decoded. They are far more
accessible because they are generally an agreed upon interchange point that most others can access and reason about.

We leverage that, for text, **Unicode Code Points** are an agreed upon interchange format, giving rise to this general
framework for encoding and decoding text:

The way to tap into this concept is to create an object that models an encoding concept, which is commonly referred to
as the “Lucky 7” concept. The concept leverages a technique that has been used at least since the early days of Bruno
Haibile’s and Daiko Ueno’s iconv library, but formalizes it for interacting between 2 encodings.

We call this concept the Lucky 7.

Lucky 7
Lucky 7 is a conceptual idea a single encoding object is all you need to write to fulfill your end of the encoding bargain.
It is called the Lucky 7 because only 7 things are required from you, as the author of the encoding object, to get started:
* 3 type definitions (code_point, code_unit, state)
e 2 static member variables (max_code_points, max_code_units)

¢ 2 functions (encode_one, decode_one)

#include <cstddef>
#include

struct empty_struct {};

struct utf_ebcdic {

// (1)

using code_unit = char;

// (2)

using code_point = char32_t;

// (3)

using state = empty_struct;

/7 (4D

static constexpr inline std::size_t max_code_points = 1;
// (5)

static constexpr inline std::size_t max_code_units = 6;

// (6)

ue_encode_result encode_one(
ztd: :span<const code_point> input,
ztd: : span<code_unit> output,

(continues on next page)

6 Chapter 1. Who Is This Library For?

https://en.wikipedia.org/wiki/Unicode#Code_point_planes_and_blocks

ztd.text, Release 0.0.0

Encoded Single
Input

Decode =
Unicode Code
Point

Unicode Code
Point = Encode

Encoded Single
Output

Fig. 1: The generic pathway from one encoding to another for most (all?) text Encodings.

1.5. Design Goals and Philosophy 7

ztd.text, Release 0.0.0

(continued from previous page)

state& current,
ue_encode_error_handler error_handler

J;

/7 (7)

ue_decode_result decode_one(
ztd: : span<const code_unit> input,
ztd: :span<code_point> output,
state& current,
ue_decode_error_handler error_handler

DN

b

There are some supporting structures here that we will explain one by one, but this is the anatomy of a simple encoding
object that you and others can define to do this job. This anatomy explicitly enables some basic work:

* encoding a single indivisible unit of work from code points to code units
* decoding a single indivisible unit of work from code units to code points

* transcoding a single indivisible unit of work from the source encoding’s code units to the destination encoding’s
code code units, if they share a common code point type.

From these 3 operations above, everything else on this library can be built.

Breaking it Down
The first three typedefs are what let internal and externel machinery know what kind of values you expect out of the
ranges that go into the decode_one and encode_one function calls:

* code_unit - the input for decoding (decode_one) operations and the output for encode operations.

* code_point - the input for encode operations and the output for decoding (decode_one) operations.

char is the code unit type that the ranges work with for incoming and outgoing encoded data. char32_t is the code
point type that the ranges use for incoming and outgoing decoded data. Given those, that gives us the ability to define
the result types we will be working with.

Result Types

Result types are specific structs in the library that mark encode and decode operations. They can be used by composing
with the templated type zzd::text::decode_result and ztd::text::encode_result.

#include <ztd/text/encode_result.hpp>
#include <ztd/text/decode_result.hpp>

using ue_decode_result = ztd::text::decode_result<
ztd: : span<const char>,
ztd: : span<char32_t>,
empty_struct

>3

using ue_encode_result = ztd::text::encode_result<
ztd: : span<const char32_t>,

(continues on next page)

8 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

ztd: : span<char>,
empty_struct
>3

These result structures are returned from the lowest level encode and decode operations. They contain:
* An input member, which is the range that is passed into the decode_one and encode_one functions;
¢ An output member;

* A state member, which is a reference to the state that was passed in to the decode_one or encode_one
functions;

¢ An error_code member, which is an enumeration value from ztd::text::encoding_error; and

* An handled_errors member, which is an unsigned integral (std: : size_t) value that says whether or not the
given error_handler was invoked and how many times

* An errors_were_handled() member function, which returns a boolean value indicating whether
handled_errors is greater than 0.

These variables can be used to query what exactly happened during the operation (error_code and handled_errors),
inspect any state passed into encodings (not used for an encoding such as utf_ebcdic), and how much input and output
has been read/what is left (by checking the input and output ranges whose .begin() value has been incremented
compared to the input values). Understanding the result types now, we move to the error handler:

Error Handlers

The only other thing we need is the error handler, now. Generally, this is a template argument, but for the sake of
illustration we use a concrete type here:

#include <functional>

using ue_decode_error_handler = std::function<
ue_decode_result(
const utf_ebcdicg&,
ue_decode_result,
ztd: : span<char>

>3

using ue_encode_error_handler = std::function<
ue_encode_result(
const utf_ebcdicg,
ue_encode_result,
ztd: :span<char32_t>

>3

The error handlers use a result-in, result-out design. The parameters given are:

0. The encoding which triggered the error. This allows you to access any information about the encoding object
type or any values stored on the encoding object itself.

1. The result object. This object has the error_code member set to what went wrong (see
ztd::text: :encoding_error), and any other changes made to the input or output during the operation.

1.5. Design Goals and Philosophy 9

ztd.text, Release 0.0.0

2. A contiguous range (ztd: : span) of code_units or code_points that were already read by the algorithm. This
is useful for when the input range uses input iterators, which sometimes cannot be “rolled back” after something
is read (e.g., consider std::istream_iterator).

It returns the same type as the result object. Within this function, anyone can perform any modifications they like
to the type, before returning it. This is an incredibly useful behavior that comes in handy for defining custom error
handling behaviors, as shown in the Error Handling Design section. For example, this allows us to do things like insert
REPLACEMENT_CHARACTER WFFFD () into a encoding through the zzd::text::replacement_handler_t or en-
able speedy encoding for pre-validated text using zzd::text::assume_valid_handler. When writing your encode_one
or decode_one function, it is your responsibility to invoke the error handler (or not, depending on the value of
ztd: :text::is_ignorable_error_handler).

Liberation Achieved

If you achieve all these things, then we can guarantee that you can implement all of the desired functionality of an
encoding library. This is the core design that underpins this whole library, and how it frees both Library Developers
from needing to manically provide every possible encoding to end-users, and end-users from having to beg library
developers to add support for a particular encoding.

e No Committe
e No standard bh to be
added.

= o, s LIC and JeamHiyd "ThePAD" Meneicie 2620, ATl Rights Reserved

|

There is more depth one can add to an encoding object, but this is the base, required set of things to know and handle
when it comes to working with ztd.text. You can build quite a complex set of features from this functionality, and we
encourage you to keep reading through more of the design documentation to get an understanding for how this works!

10 Chapter 1. Who Is This Library For?

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://www.youtube.com/watch?v=w4qYf2pvPg4&t=2535

ztd.text, Release 0.0.0

1.5.2 Lost Information

One of the biggest problems facing text processing in programming languages today is the loss of information as its
carried through any given system. In C and C++, this comes in the form of all strings - especially multibyte strings -
being given the same type. For example:

void read_name(const char* name) {
// (1)
}

As the maintainer of code inside of the function read_name, what is the encoding of “name” at (1)? What is its
normalization form? What system did it originate from? The function written in C++ form offers very little benefit
either:

void read_name(std::string_view name) {
// (1)
}

Even here, we’ve only made marginal improvements. We know the string is stored in some heap by the default allocator,
we have the size of the string, but that only tells us how many char units are stored, not how many conceptual, human-
readable characters there are or any other pertinent information. Is this information encoded? Is it UTF-8? Maybe it’s
EBCDIC Code Page 833. Maybe it’s UTF-7-IMAP. You don’t know, and by the time you start inspecting or poking
at the individual char code units, who knows what can happen? To make matters worse, even C++ and its Standard
Library have poor support for encoding/decoding, let alone Unicode in general. These problems have been explained
in quite a lot of detail up to this point, but the pitfalls are many:

... Where are potential problems?
All over the place? Let’s see...
—R. Martinho Fernandes, last edited April 20th, 2018

Some proponents say that if we just change everything to mean “UTF-8” (const char*, std::string, and more), then we
can just assume UTF-8 throughout the entire application and only accept UTF-8 and that will end all our encoding
problems. Typically, these people read UTF-8 Everywhere and then just go all-in on the philosophy, all the time.

“UTF-8 Everywhere!!”

There are many in the programming space that believe that just switching everything to UTF-8 everywhere will solve
the problem. This is, unfortunately, greatly inadequate as a solution. For those who actually read the entire UTF-8
Everywhere manifesto in its fullness, they will come across this FAQ entry:

Q: Why not just let any programmer use their favorite encoding internally, as long as they knows
how to use it?

A: We have nothing against correct usage of any encoding. However, it becomes a problem when the same
type, such as std::string, means different things in different contexts. While it is ‘ANSI codepage’ for some,
for others, it means ‘this code is broken and does not support non-English text’. In our programs, it means
Unicode-aware UTF-8 string. This diversity is a source of many bugs and much misery. ...

—FAQ Entry #6

The core problem with the “std: :string is always UTF-8” decision (even when they are as big as Google, Apple,
Facebook, or Microsoft and own everything from the data center to the browser you work with) is that they live on a
planet with other people who do not share the same sweeping generalizations about their application environments. Nor
have they invoked the ability to, magically, rewrite everyone’s code or the data that’s been put out by these programs in
the last 50 or 60 years. This results in a gratuitous amount of replacement characters or Mojibake when things do not
encode or decode properly:

1.5. Design Goals and Philosophy 11

https://stackoverflow.com/a/17106065
https://utf8everywhere.org/
https://utf8everywhere.org/#faq.liberal

ztd.text, Release 0.0.0

5,34 EUR
i

R

(g w0 QRS --
i (TGExR , AL345
PR

.-_pg_ﬂ.N'L:-n"";_h

!) %FGF‘O %% A om x
Dé.%ﬁafﬂﬁOE;QI,H) Q‘E %;EE ;f
E 4813 -4 ‘ AR mi“ s g
) ;‘- :

There is a distinct problem that human beings are so used to computers failing them with encoding that they know how
to recognize the mistranslated text:

We get so good at it that we can even recognize the bad text . There’s a wiki for it too

...... It used to be
a lot worse. UTF-8 definitely helps a whole lot.

—Elias Daler
So, what do we do from here?

Fighting Code Rot

We need ways to fight bit rot and issues of function invariants — like expected encoding on string objects — from infesting
code. While we can’t rewrite every function declaration or wrap every function declaration, one of the core mechanisms
this library provides is a way of tracking and tagging this kind of invariant information, particularly at compile time.

We know we can’t solve interchange on a global level (e.g., demanding everyone use UTF-8) because, at some point,
there is always going to be some small holdout of legacy data that has not yet been fixed or ported. The start of solving

this is by having views and containers that keep encoding information with them after they are first constructed. This
makes it possible to not “lose” that information as it flows through your program:

using utf8_view = ztd::text::decode_view<ztd::text::utf8>;

(continues on next page)

12 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

void read_name(utf8_view name) {

// (D)

Now, we have an explicit decoding view into a sequence of UTF-8 code units, that produces unicode_code_points
that we can inspect and work with. This is much better, as it uses C++’s strong typing mechanisms to give us a useful
view. This means that not only does the person outside of the read_name function understand that the function expects
some UTF-8 encoded text, but the person inside the function knows that they are working with UTF-8 encoded text.
This solves both ends of the user and maintainer divide.

Of course, sometimes this is not always possible. ABI stability mandates some functions can’t have their signatures
change. Other times, you can’t modify the signature of functions you don’t own. This is still helpful in this case, as you
can, at the nearest available point inside the function or outside of it, apply these transformations:

void read_name(const char* untagged_name) {

using utf8_view = ztd::text::decode_view<
ztd: :text::basic_utf8<char>, // use "char" as the code unit type
std: :string_view // explicitly use this view type

>3

// constructs a std::string view and

// stores it in the proper place

utf8_view name(untagged_name);

// use it...

Because the range and container types are templated on not only encoding, but the underlying storage type, you can wrap
up both parameter and return values. You can also access the underlying std: :string_view using .base(), so it
remains easy to interop and work with pre-existing systems using newer, more explicit types. Other ranges become pos-
sible, including, say, the __gnu_cxx::rope <https://gcc.gnu.org/onlinedocs/gcc-10.2.0/libstdc++/api/a08538. html>
class that is part of the GCC Extensions Library. It genuinely doesn’t matter what you pick: we will wrap it up and
present the proper interface to you. This also follows UTF-8 Everywhere’s requirements for what it would want out of
a C++ Library that does text Correctly™:

If you design a library that accepts strings, the simple, standard and lightweight std::string would do just
fine. On the contrary, it would be a mistake to reinvent a new string class and force everyone through
your peculiar interface. Of course, if one needs more than just passing strings around, he should then use
appropriate text processing tools. However, such tools are better to be independent of the storage class
used, in the spirit of the container/algorithm separation in the STL.

—UTF-8 Everywhere, FAQ Entry #19

Rather than create new std: :string or std: :string_view types, we simply wrap existing storage interfaces and
provide specific views or operations on those things. This alleviates the burden of having to reinvent things that already
work fine for byte-oriented interfaces, and helps programmers control (and prevent) bugs. They also get to communicate
their intent in their APIs if they so desire (“This API takes a std: : string_view, but with the expectation that it’s going
to be decoded as ut£8”). The wrapped type will always be available by calling .base (), which means a developer can
drop down to the level they think is appropriate when they want it (with the explicit acknowledgement they’re going to
be ruining things).

1.5. Design Goals and Philosophy 13

https://utf8everywhere.org/#faq.ood

ztd.text, Release 0.0.0

1.5.3 Error Handling

Text is notorious for being a constant and consistent malformed source of input. From intermediate services mangling
encodings and producing Mojibake to bungled normalization and bad programs not understanding even the slightest
hint of code beyond ASCII, there is a lot of text data that is strictly bad for any program to consume.

When interfacing with range types such as zzd::text::decode_view, functions like ztd::text: :transcode, and individual
.encode_one or .decode_one calls on encoding objects like z7d::text::utf8, you can:

* give an error handler type as a template parameter and as part of the constructor; or,
* pass it in as a normal argument to the function to be used.

They can change the conversion and other operations happen works. Consider, for example, this piece of code which
translates from Korean UTF-8 to ASCII:

#include <ztd/text/transcode.hpp>
#include <iostream>

int main(int, char*[]) {

// (1D

std: :string my_ascii_string = ztd::text::transcode(
// input
us8"",

// from this encoding
ztd: :text::utf8 {},
// to this encoding
ztd: :text::ascii {});

std: :cout << my_ascii_string << std::endl;

return 0;

Clearly, the Korean characters present in the UTF-8 string just cannot fit in a strict, 7-bit ASCII encoding. What,
then, becomes the printed output from std: :cout at // (2)? The answer is two ASCII question marks, ??7. The
ztd: :text: :replacement_handler_t object passed inat // (1) substitutes replacement characters (zero or more) into the
output for any failed operation. There are multiple kinds of error handlers with varying behaviors:

e replacement_handler_t, which inserts a substitution character specified by either the encoding object or some
form using the default replacement character "U+FFFD";

pass_handler, which simply returns the error result as it and, if there is an error, halts higher-level operations
from proceeding forward;

default_handler, which is just a name for the replacement_handler_t or throw_handler or some other type
based on compile time configuration of the library;

throw_handler, for throwing an exception on any failed operation;

incomplete_handler, for throwing an exception on any failed encode/decode operation; and,

assume_valid_handler, which triggers no checking for many error conditions and can leads to Undefined Behav-
ior if used on malformed input.

Warning: For the love of what little remains holy, PLEASE don’t use ztd: : text: :assume_valid_handler
unless you REALLY know you need it. It is a surefire way to open up vulnerabilities in your text processing

14 Chapter 1. Who Is This Library For?

20

21

22

23

24

25

26

27

28

ztd.text, Release 0.0.0

algorithm. Not a single line of code using this type should pass code review if there is even the slightest thought
that this will be used on any input that is not PERFECTLY under the DIRECT, PERSONAL control of the authors,
auditors, and maintainers of the code.

These are all the error handlers that you have at your disposal, but they are just pre-provided types you can instantiate
yourself. Nothing stops you from making your own error handling type! In order to do that, however, you need to
understand what an error handler is composed of, and what it’s got inside of itself.

Error Handler Anatomy
An error handler is just a function (or an object with a function call operator) that takes 3 parameters and returns 1
result:

* takes the encoding that will call it when something goes wrong;

» takes the result object you expect to be working with (specifically, ztd::text::encode_result and
ztd: :text: :decode_result), which contains the current state of affairs from the encoding operation;

* takes a contiguous range representing any input values that may have been read but will not be used; and,
* returns the same result type with any modifications (or not!) you’d like to make.

They are classes with a function call operator and utilizes a few templates. Here’s the skeleton for one:

#include <ztd/text.hpp>

struct my_error_handler {
// Helper definitions
template <typename Encoding>
using code_point_span
= ztd::span<const ztd::text::code_point_t<Encoding>>;
template <typename Encoding>
using code_unit_span
= ztd::span<const ztd::text::code_unit_t<Encoding>>;

// Function call operator that returns a "deduced" (auto) type
// Specifically, this one is called for encode failures
template <typename Encoding, typename Input, typename Output,
typename State>
auto operator()(
// First Parameter
const Encoding& encoding,
// Second Parameter, encode-specific
ztd: :text::encode_result<Input, Output, State> result,
// Third Parameter
code_point_span<Encoding> input_progress,
// Fourth Parameter
code_unit_span<Encoding> output_progress) const noexcept {
// ... implementation here!
(void)encoding;
(void)input_progress;
(void)output_progress;
return result;

(continues on next page)

1.5. Design Goals and Philosophy 15

38

39

40

41

42

43

44

45

46

47

48

49

50

ztd.text, Release 0.0.0

(continued from previous page)

// Function call operator that returns a "deduced" (auto) type
// Specifically, this one is called for decode failures
template <typename Encoding, typename Input, typename Output,
typename State>
auto operator() (
// First Parameter
const Encoding& encoding,
// Second Parameter, decode-specific
ztd: :text::decode_result<Input, Output, State> result,
// Third Parameter
code_unit_span<Encoding> input_progress,
// Fourth Parameter
code_point_span<Encoding> output_progress) const noexcept {
// ... implementation here!
(void)encoding;
(void)input_progress;
(void)output_progress;
return result;

};
int main(int, char®* argv[]) {

// convert from execution encoding to utf8 encoding,
// using our new handler
std: :string utf8_string = ztd::text::transcode(
std: :string_view(argv[0]), ztd::text::execution,
ztd: :text: :basic_utf8<char> {}, my_error_handler {});

return 0;

This skeleton, by itself, works. It doesn’t do anything: it just returns the result object as-is. This will result in the
algorithm stopping exactly where the error occurs, and returning back to the user. This is because the result has
an error_code member variable, and that member variable, when it reaches the higher level algorithms, stops all
encoding, decoding, transcoding, counting, validation, and etc. work and exists with the proper information.

First Parameter

The first parameter is simple enough: it is the encoding that is calling this error handler. If you invoke an encode_one
or decode_one (or a higher-level conversion algorithm) on a z7d: :fext: :utf8 object, then you can expect a first parameter
of type ztd: :text: :utf8 to be passed to the error handler.

Note: If the function call .encode_one or .decode_one is a static function that has no instance, then the encoding
object will create a temporary instance to pass to the function. This happens with most encodings that do not contain
any pertinent information on the encoding object itself, like all the Unicode encodings and the ASCII/locale/string
literal encodings.

This can be handy if you need to access information about the encoding object or encoding type. You can get information
about the encoding by using:

16 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

e ztd::text::encode_state_t

o ztd::text::decode_state_t

e ztd::text::code_unit_t<Encoding>

* ztd::text::code_point_t<Encoding>
e ztd::text::code_unit_v<Encoding>

e ztd::text::code_point_v<Encoding>

Second Parameter

The second parameter is the result object. It is of the type zzd::text::decode_result or ztd::text::encode_result. The two
types have identical information inside of them, but have different names so that a function call operator can tell the
difference between the two, if it’s necessary.

This contains all of the state and information that the decode operation/encode operation would return, if left unmodified
by the error handler. If you don’t want to do anything to it, simply pass it through by returning it with return result;
. Otherwise, you have access to the input range, the output range, any .state relevant to the operation, the .
error_code, and the . error_handled value. You can modify any one of theses, or even perform a recovery operation
and change the .error_code to be ztd: : text: :encoding_error: : ok. Literally, anything can be done!

For example, someone can see if there is space left in the result.output parameter, and if so attempt to serialize a
replacement character in place there (this is what ztd: :text::replacement_handler_t does).

Third Parameter

The third parameter is a contiguous range of input values that were read. Typically, this is a ztd: : span handed to you,
or something that can construct a ztd: : span or either code units or code points (whatever the output type has). This
is useful for input_ranges and input_iterators where it is impossible to guarantee a value can be written, as is
the case with istream_iterator and other I/O-style iterators and ranges.

Fourth Parameter

The fourth parameter is a contiguous range of output values that were almost written to the output, but could not
be because the output has no more room left. Typically, this is a ztd: : span handed to you, or something that can
construct a ztd: : span or either code units or code points (whatever the input type has). This is particularly useful
for output_ranges and output_iterators where there is no way to guarantee all characters will be successfully
written, as is the case with ostream_iterator and other I/O-style iterators and ranges.

The fourth parameter is only ever filled out if the error returned is ztd::text::encoding_error: :insufficient_output. It is
very important for when someone does bulk-buffered writes, since multiple writes are not guaranteed to fit within the
given zrd: :text::max_code_points_v or ztd::text::max_code_units_v for a specific encoding. (They only represent the
maximum for a single, atomic operation.)

This is useful for grabbing any would-be-written output data, and storing it for later / completing it. For example,
writing to a smaller, contiguous buffer for delivery and looping around that buffer can be faster, but it runs the risk of
partial reads/writes on the boundaries of said smaller, contiguous buffer.

1.5. Design Goals and Philosophy 17

https://en.cppreference.com/w/cpp/iterator/istream_iterator
https://en.cppreference.com/w/cpp/iterator/ostream_iterator

20

21

22

23

24

25

ztd.text, Release 0.0.0

Secret Type Definition

There is a type definition you can add to your error handler to signal that it is okay to ignore it’s calls. It goes on the
struct and looks like:

using assume_valid = std::false_type; // or std::true_type

This is allows any encoding which uses ztd::text::is_ignorable_error_handler property on your error handler to know
if it’s okay to ignore the error handler when bad things happen. Having this functionality means you can create a “debug
handler” for text you previously know is valid, but might want to check during a debug or tracing build or something
as it encodes and decodes through the system:

struct my_debug_handler {

// Assume it's valid if the config value
// is explicitly turned off
using assume_valid = std::integral_constant<
bool, (MY_ENCODING_TRACE_IS_TURNED_OFF != 0)
>3

// rest of the implementation...

1

Writing A Handler

When put together, it can generally look like this:

#include <ztd/text/encode.hpp>
#include <ztd/text/encoding.hpp>

#include <iostream>

using ascii_encode_result = ztd::text::encode_result<
// input range type
std::u32string_view,
// output range type; figured out from function call
ztd: : span<char>,
// the state type for encode operations
ztd: :text::encode_state_t<ztd::text::ascii_t>>;

ascii_encode_result my_printing handler(const ztd::text::ascii_t& encoding,
ascii_encode_result result,
ztd: : span<const char32_t> unused_read_characters,
ztd: : span<const char> unused_write_characters) noexcept {
(void)encoding;
// just printing some information
std::cout << "An error occurred.\n"
<< "\tError code value: "
<< ztd::text::to_name(result.error_code) << "\n"
<< "\t# of code unit spaces left: " << result.output.size()
<< "\n"
<< "\t# of unused code points:

(continues on next page)

18 Chapter 1. Who Is This Library For?

39

40

41

42

43

44

45

46

47

48

49

50

ztd.text, Release 0.0.0

(continued from previous page)

<< unused_read_characters.size() << "\n"
<< "\n"
<< "\t# of unused code units:
<< unused_write_characters.size() << "\n"
<< "\tInput units left: " << result.input.size() << "\n";
// setting the error to "ok"
// tells the algorithm to keep spinning,
// even if nothing gets written to the output
result.error_code = ztd::text::encoding_error: :ok;
return result;

int main(int, char*[]) {
std: :string my_ascii_string = ztd::text::encode(
// input
U,
// to this encoding
ztd: :text::ascii,
// handled with our function
&my_printing_handler);

ZTD_TEXT_ASSERT(my_ascii_string == "");

return 0;

The result in my_ascii_string should be an empty string: nothing should have succeeded and therefore the function
will just return an empty string. The print out will look like this:

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: 1

An error occurred.
Error code value: invalid_sequence
of unused characters: 1
Input units left: O

If you would like the higher-level called function to return more information to you, use the lower level en-
code_to/encode_into, decode_to/decode_into, transcode_to/transcode_into.

If you need to do more, you can change from concrete types to templates, and work at increasingly higher levels of
genericity in order to have the printing handler do more and more.

1.5. Design Goals and Philosophy 19

ztd.text, Release 0.0.0

Lossy Operation Protection

Occasionally, you will end up in a situation where you want to convert some text from its pristine and ideal Unicode
form to some other form. Maybe for interopation purposes, maybe because some function call can’t properly handle
embedded NULs in the text so you need to use an overlong sequence to encode the 0 value in your text. No matter what
the case is, you need to leave the world of Unicode Code Points, Unicode Scalar Values, and all the guarantees they
provide you. Let’s take an example, going from UTF-8 to 7-bit-clean ASCII:

#include <ztd/text/transcode.hpp>
#include <iostream>

int main(int, char#*[]) {

// (1)

std: :string my_ascii_string = ztd::text::transcode(
// input
ug"",

// from this encoding
ztd: :text::utf8 {},
// to this encoding
ztd::text::ascii {});

std: :cout << my_ascii_string << std::endl;

return 0;

This will produce a compile time error (with this error number for MSVC as an example):

error C2338: The encode (output) portion of this transcode is a lossy, non-injective operation. This
means you may lose data that you did not intend to lose; specify an ‘out_handler’ error handler param-
eter to transcode[_to] (in, in_encoding, out_encoding, in_handler, out_handler,

) or transcode_into(in, in_encoding, out, out_encoding, in_handler, out_handler,
.. .) explicitly in order to bypass this.

The reason this happens is because we can detect, at compile time, that the conversion from Unicode Code Points to
ASCII is a lossy transformation. When this happens, we realize the conversion will be a lossy one: therefore, it makes
sense that the user cannot perform the encoding or decoding operation without being explicit about how they are going
to handle errors because there is such a gigantically enormous possibility that they will mangle incoming text.

Since this library is trying to prevent Mojibake and other encoding problems, you are required to tag any potentially-
lossy encoding with an error handler, to be explicit and acknowledge that you may or may not be ruining someone’s
day:

#include <ztd/text/transcode.hpp>
#include <iostream>

int main(int, char*[]) {
std: :string my_ascii_string = ztd::text::transcode(
// input
us8"",
// from this encoding
ztd: :text::utfs,
// to this encoding

(continues on next page)

20 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

(continued from previous page)

ztd: :text::ascii,
// (1) error handler
ztd: :text: :replacement_handler);
std: :cout << my_ascii_string << std::endl; // (2)

ZTD_TEXT_ASSERT (my_ascii_string == "7??");

return 0;

Any encoding which does not meet the requirements of either zzd::text::is_encode_injective_v or
ztd::text::is_decode_injective_v (or both, for transcoding which uses both an encode and a decode operation)
will throw an error if you specify no error handlers in the text. This is done through the Injectivity Lucky 7 Extensions
that go beyond the traditional Lucky 7 with 2 std: : true_type/std: : false_type definitions.

1.5.4 Converting, Counting, and Validating Text

Conversions are one of the more important aspects of dealing with textual data. To support this, ztd.text contains 7 dif-
ferent methods, each with various overloads and inner groupings of functions to aid in encoding, decoding, transcoding,
validating, and counting code points and code units.

As shown in the Lucky 7 Design, everything here is supported by just having either the required one or two encoding
objects with the designated functions, variables and type definitions. The core of the explanation is in this algorithm:

 Is the input value empty? Return the current results, everything is okay . Otherwise,

0. Setupan intermediate buffer of code_points using the max_code_points of the input encoding count
for the next operation.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
buffer.

— [If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

2. Do the encode_one step from the intermediate into the output.

— Ifitfailed, return with the current input (unmodified from before this iteration, if possible), output,
and state.

* Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

That’s it for the core loop. Failure is determined exclusively by whether or not the error_code returned from the
decode or encode operation’s result object is zzd::text::encoding_error::ok. If it is OK, then the loop continues until
the input is exhausted. Otherwise, it stops. This forms the basis of the library, and will essentially be our version of
“Elements of Programming”, but for working with Text:

1.5. Design Goals and Philosophy 21

ztd.text, Release 0.0.0

Elements Qf

qunScoJing

V\-Puanda

m%m lkaspersky

The above algorithm can work for all the below operations:
* transcoding: the above loop presented as-is.
 encoding: take an input of code_points, and simply do not do the decoding step.
* decoding: take an input of code_units, and simply do not do the encoding step.

* validating code units: do the transcoding loop into 2 intermediate buffers, and compare the result of the final
intermediate output to the input.

« validating code points: do the transcoding loop, but in the reverse direction for an input of code_points
(encode first, then decode) into 2 intermediate buffers, and compare the result of the final intermediate output
to the input.

* counting code units: perform the “encoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring the actual contents of the buffer each time.

* counting code points: perform the “decoding” operation into an intermediate buffer and repeatedly count the
number of buffered writes, discarding or ignoring actual the contents of the buffer each time.

This covers the full universe of potential operations you may want to perform on encoded text, for the purposes of input
and output. If you implement the base Lucky 7 or implement the extended Lucky 7 for an encoding, you can gain access
to the full ecosystem of encodings within your application.

22 Chapter 1. Who Is This Library For?

https://youtu.be/RnVWON7JmQ0?t=1380

ztd.text, Release 0.0.0

Encode

Encoding is the action of converting from one sequence of decoded information to a sequence of encoded information.
The formula given for Encoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

~~—, Decode

/

|'f_|f Encoded Single \
Input /

ys

ecode =
Umcode Code

\ Intermediate

| Code Points x

Unicode Code
Point = Encode

)/

Encoded Single
Qutput

Encode\§:f4/

Fig. 2: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

In particular, we are interested in the operation that helps us go from the decoded input to the encoded output, which
is the bottom half of the diagram. The input in this case is labeled “intermediate”, because that is often what it is. But,
there are many uses for working directly with the encoded data. A lot of the world does not speak directly in 21-bit
Unicode Code Points, but instead speaks in UTF-8. Legacy systems are often found communicating with Code Pages
(e.g., EBCDIC or SHIFT-JIS); until those systems go down or are replaced, it is imperative to send them well-formed
data, whether over a network or across an inter-process communication bridge of any kind.

Thusly, we use the algorithm as below to do the work. Given an input of code_points with an encoding, a tar-
get output, and any necessary additional state, we can generically convert that sequence of code_points into its

1.5. Design Goals and Philosophy 23

ztd.text, Release 0.0.0

encoded form:

e [sthe input value empty? Return the current results with the the empty input, output, and state, everything
is okay ! Otherwise,

0. Do the encode_one step from input (using its begin() and end()) into the output code_unit storage
location.

— If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

¢ Update input ‘s begin() value to point to after what was read by the encode_one step.
* Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_point sequence to
the code_unit sequence.

Check out the API documentation for ztd.::text::encode to learn more.

Decode

Decoding is the action of converting from one sequence of encoded information to a sequence of decoded information.
The formula given for Decoding is effectively just the first half of the diagram shown in the main Lucky 7 documentation,
reproduced here with emphasis added:

In particular, we are interested in the operation that helps us go from the encoded input to the decoded output, which
is the top half of the diagram. The output we are interested in is labeled as an “intermediate”, because that is often
what it is. But, there are many uses for working directly with the decoded data. Many Unicode algorithms are specified
to work over unicode code points or unicode scalar values. In order to identify Word Breaks, classify Uppercase vs.
Lowercase, perform Casefolding, Regex over certain properties properly, Normalize text for search + other operations,
and many more things, one needs to be working with code points as the basic unit of operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, a tar-
get output, and any necessary additional state, we can generically bulk convert the input sequence to a form of
code_points in the output:

* Isthe input value empty? Return the current results with the the empty input, output, and state, everything
is okay ! Otherwise,

0. Do the decode_one step from input (using its begin() and end ()) into the output code_point storage
location.

— Ifitfailed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

e Update input‘s begin() value to point to after what was read by the decode_one step.
¢ Go back to the start.

This involves a single encoding type, and so does not need any cooperation to go from the code_units to the
code_points. Notably, the encoding’s code_point type will hopefully be some sort of unicode code point type
(see: ztd::text::is_code_point for a more code-based classification). Though, it does not have to be for many different
(and very valid) reasons.

Check out the API documentation for ztd.::text::decode to learn more.

24 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Decode

Encoded Single
Input

Decode =
Unicode Code
Point

Intermediate

Code Points

Unicode Code
Point = Encode

Encoded Single
Output

Encode

Fig. 3: The generic pathway between 2 encodings, but modified to show the exact difference between the encoding step
and the decoding step.

1.5. Design Goals and Philosophy 25

ztd.text, Release 0.0.0

Transcode

Transcoding is the action of converting from one sequence of encoded information to another sequence of (usually
differently) encoded information. The formula given for Transcoding is actually exactly the same as the one shown in
the main Lucky 7 documentation, reproduced here:

/=

i
|'f_|" Encoded Single
Input

———

1

I." | Decode =
[| Unicode Code
Point

S

Unicode Code | ﬁ
Point = Encode |

!

[]

e —

Encoded Single
| | Output

N

Fig. 4: The generic pathway from one encoding to another for most text Encodings.

The core tenant here is that as long as there is a common intermediary between the 2 encodings, you can decode from
the given input into that shared common intermediary (e.g., unicode code points or unicode scalar values), then encode
from the common intermediary to the second encoding’s output. This is a pretty basic way of translating data and it’s
not even a particularly new idea (iconv has been doing this for well over a decade now, libogonek got this core idea
rolling in a C++ interface, and in general this is quite literally how all data interchange has been done since forever).
The equalizer here is that, unlike other industries that struggle to define an interchange format, Unicode Code Points
has become the clear and overwhelming interoperation choice for people handling text all over the world.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with a from_encoding, a
to_encoding with a target output, and any necessary additional states, we can generically convert that one encoding

26 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

to the other so long as those encodings follow the Lucky 7 design:

e Isthe input value empty? Return the current results with the the empty input, output, and states, everything
is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding as the maximum size of the storage location, for the next operation.

1. Do the decode_one step from input (using its begin() and end ()) into the intermediate code_point
storage location.

— Ifit failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

2. Do the encode_one step from the intermediate into the output.

— [If it failed, return with the current input (unmodified from before this iteration, if possible), output,
and states.

e Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

This fundamental process works for any 2 encoding pairs, and does not require the first encoding from_encoding to
know any details about the second encoding to_encoding! This means a user is only responsible for upholding their
end of the bargain with their encoding object, and can thusly interoperate with every other encoding that speaks in the
same intermediade, decoded values (i.e. unicode code points).

Check out the API documentation for zzd: :text: :transcode to learn more.

Validate Encodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code points can be turned into code units of the given encoding. The way it does this, however,
is two-fold:

* it first encodes the input code units, to see if it can do the transformation without loss of information; then,
* it decodes the output from the last step, to see if the final output is equivalent to the input.
The algorithm for this is as follows:

* Is the input value empty? Return the current results with the the empty input, valid set to true and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Set up an intermediate_checked_output storage location of code_points, using the
max_code_points of the input encoding, for the next operations.

2. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the decode_one step from the intermediate into the intermediate_checked_output.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_points of the input sequentially against the code_points within the
intermediate_checked_output.

1.5. Design Goals and Philosophy 27

ztd.text, Release 0.0.0

— [If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

» Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If
an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the encode_one step and the decode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd: :text: :validate _encodable as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

* it first decodes the input code units, to see if it can do the transformation without loss of information; then,
* it encodes the output from the last step, to see if the final output is equivalent to the input.
The algorithm for this is as follows:

e Is the input value empty? Return the current results with the the empty input, valid set to true, and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Setupan intermediate_checked_output storage location of code_units, using themax_code_units
of the input encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end ()) into the intermediate code_point
storage location.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

4. Compare the code_units of the input sequentially against the code_units within the
intermediate_checked_output.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

¢ Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. The reason for
checking if it can be turned back is to ensure that the input code units actually match up with the output code units. If

28 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

an encoding performs a lossy transformation in one direction or the other, then validation will fail if it cannot reproduce
the input exactly. And, you will know the exact place in the input that caused such a failure.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for zzd::text: :validate_decodable_as to learn more.

Validate Decodable

Validation is the way to verify a given sequence of input can have a specific action performed on it. Particularly, we
check here if the input of code units can be turned into code points of the given encoding. The way it does this, however,
is two-fold:

* it first decodes the input code units, to see if it can do the transformation without loss of information; then,
* it encodes the output from the last step.
The algorithm for this is as follows:

* Isthe input value empty? Return the current results with the the empty input, valid set to true, and states,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Setupan intermediate_checked_output storage location of code_units, using themax_code_units
of the output encoding, for the next operations.

2. Do the decode_one step from input (using its begin() and end ()) into the intermediate code_point
storage location.

— If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

3. Do the encode_one step from the intermediate into the intermediate_checked_output.

— [If it failed, return with the current input (unmodified from before this iteration, if possible), valid
set to false, and states.

e Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

This fundamental process works for all encoding objects, provided they implement the basic Lucky 7. Unlike the encode
and decode validation functions, this one does not have anything to compare its output to. By virtue of converting from
the source to the destination, it is transcodable. Whether or not it can be round-tripped in the other direction isn’t
particularly of concern, just that it can do so without error. This is the more general purpose forms of the encode or
decode operations.

There are extension points used in the API that allow certain encodings to get around the limitation of having to do both
the decode_one step and the encode_one step, giving individual encodings control over the verification of a single
unit of input and of bulk validation as well.

Check out the API documentation for ztd: :text: :validate transcodable as to learn more.

1.5. Design Goals and Philosophy 29

ztd.text, Release 0.0.0

Count as Decoded

Counting code units is the action of finding out how many code points will result from a given sequence of encoded
information. Essentially, we run the decoding algorithm loop, but instead of giving the end user the decoded values,
we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

e Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points, using the max_code_points of the input
encoding, for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

— If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by decode_one; add that difference to the current count.

e Update input‘s begin() value to point to after what was read by the decode_one step.
* Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_units. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error: :ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for zzd::text::count_as_decoded to learn more.

Count as Encoded

Counting encodable data is the action of finding out how many code units will result from a given sequence of already
decoded information, AKA a sequence of code points. Essentially, we run the encoding algorithm loop, but instead of
giving the end user the encoded values, we instead simply provide the count for running that bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

e Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_units, using the max_code_units of the input en-
coding, for the next operations.

1. Do the encode_one step from input (using its begin() and end()) into the intermediate code_unit
storage location, saving the returned intermediate_output from the encode_one call.

— If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Compute the difference between the begin(intermediate) from the original step, and the
begin(intermediate_output) returned by encode_one; add that difference to the current count.

30 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

» Update input‘s begin() value to point to after what was read by the encode_one step.
* Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error: :ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text::replacement_handler_t).

Check out the API documentation for ztd: :text::count_as_encoded to learn more.

Count as Transcoded

This operation counts how much text will result from a transcode operation. Essentially, we run the encoding algorithm
loop, but instead of giving the end user the re-encoded values, we instead simply provide the count for running that
bulk operation.

Thusly, we use the algorithm as below to do the work. Given an input of code_units with an encoding, an initial
count set at 0, and any necessary additional state, we can generically predict how many code units will result from
a decoding operation by running the following loop:

e Is the input value empty? Return the current results with the the empty input, curent count, and state,
everything is okay ! Otherwise,

0. Set up an intermediate storage location of code_points (of the input encoding), using the
max_code_points of the input encoding; and, set up an intermediate_output storage location of
code_units (of the output encoding), for the next operations.

1. Do the decode_one step from input (using its begin() and end()) into the intermediate code_point
storage location, saving the returned intermediate_output from the decode_one call.

— If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

2. Do the encode_one step from intermdiate (using its begin() and end()) into the
intermediate_output code_unit storage location, saving the returned intermediate_output
from the encode_one call.

— If it failed, return with the current input (unmodified from before this iteration, if possible), current
count, and states.

3. Compute the difference between the begin(intermediate_output) from the original step, and the
begin(result.output) returned by encode_one; add that difference to the current count.

e Update input‘s begin() value to point to after what was read by the encode_one step.
¢ Go back to the start.

This involves a single encoding type, and so does not need any cooperation to count the code_points. Note that this
algorithm doesn’t show what the error handler does; if the error handler “erases” the failure by setting the result type’s
.error_code == ztd::text::encoding_error: :ok, then the algorithm will keep going. This is useful to, for
example, detect the maximum size of an operation even if it errors and would result in replacement characters being
inserted (e.g., from ztd::text: :replacement_handler_t).

Check out the API documentation for ztd: :text::count_as_transcoded to learn more.

1.5. Design Goals and Philosophy 31

ztd.text, Release 0.0.0

1.5.5 Strong vs. Weak Code Units/Points and Legacy Encodings

Every encoding object must have code_point and code_unit type definitions on it. Typically, this is set to
ztd: :text: :unicode_code_point. But, if you go through a Prior Work for this library, you will notice Tom Hon-
ermann’s reference implementation for text_view has a concept of even more strictly controlled code_unit and
character_type than this library. From the associated paper:

This library defines a character class template parameterized by character set type used to represent char-
acter values. The purpose of this class template is to make explicit the association of a code point value
and a character set.

It has also been suggested that char32_t might suffice as the only character type; that decoding of any en-
coded string include implicit transcoding to Unicode code points. The author believes that this suggestion
is not feasible. ..

—Tom Honermann, P0244 text_view

The Case for Strength

This general philosophy in Honermann’s text_view means that you do not just use unsigned char or
unicode_code_point for code unit and code point types, but instead traffic more directly in, for example,
ebcdic_char and ebcdic_code_point types. They are essentially strong type definitions and strong wrappers sim-
pler, “lower level” types like char32_t and char. It has the following tradeoffs:

e v Can directly connect a range and its value_type to a specific encoding (e.g.,
default_code_point_encoding_t<ascii_code_point> means ascii, definitively).

* v Actively prevents passing one type of range/view to a function expecting another (e.g.,
std::basic_string<ascii_char> cannot accidentally be given to a function expecting std::string,
where the expectation might be for an execution encoded string.)

e v Easy to strip out all encoding/codec information and the range types themselves can still recover it
(e.g. ascii_code_point* u32_c_str_ptr can be strongly associated with the ascii encoding, whereas
unicode_code_point* u32_c_str_ptr loses all that information.)

* Requires reinterpret_cast or std: :memcpy/std: : copy to work with most existing code that do not have
such strongly typed pointers.

¢ Can generate a lot of template type spam for what are essentially just char.

* Not very good in constexpr, where reinterpret_cast isn’t allowed and there are pre-existing constexpr
functions that are not templated.

The question boils down to: should we have strong code point and code unit types by default in the library?

Henri Sivonen — author of encoding_rs and expert in the text domain — strongly disagrees.

32 Chapter 1. Who Is This Library For?

https://github.com/tahonermann/text_view
https://wg21.link/p0244
https://github.com/hsivonen/encoding_rs

ztd.text, Release 0.0.0

The Counterpoint

In a long piece on P0422, the C and C++ landscape, and Standardization efforts, Henri writes:

I think the C++ standard should adopt the approach of “Unicode-only internally” for new text process-
ing facilities and should not support non-Unicode execution encodings in newly-introduced features. This
allows new features to have less abstraction obfuscation for Unicode usage, avoids digging legacy appli-
cations deeper into non-Unicode commitment, and avoids the specification and implementation effort of
adapting new features to make sense for non-Unicode execution encodings.

—Henri Sivonen, It’s Time to Stop Adding New Features for Non-Unicode Execution Encodings in C++

This is a different set of choices and a different set of priorities from the outset. Sivonen’s work specifically is that
with Browsers and large code bases like Firefox; they are responsible for making very good traction and progress on
encoding issues in a world that is filled primarily with Unicode, but still has millions of documents that are not in
Unicode and, for the foreseeable future, won’t end up as Unicode.

This is a strong argument for simply channeling char16_t, char32_t, and — since C++20 — char8_t as the only
types one would need. Firefox at most deals in UTF-16 (due to the JavaScript engine for legacy reasons) and UTF-
8, internally. At the boundaries, it deals with many more text encodings, because it has to from the world wide web.
Occasionally, UTF-32 will appear in someone’s codebase for interoperation purposes or algorithms that need to operate
on something better than code units.

Unicode is also... well, a [UNI]versal [CODE]. Its purposes are interoperation, interchange, and common ground
between all the encodings, and it has been the clear winner for this for quite some time now. Sivonen makes a compelling
point for just considering Unicode — and only Unicode — for all future text endeavors.

Do we really need to focus on having support for legacy encodings? Or at least, do we really need support for legacy
encodings at the level that Tom Honermann’s text_view is trying to achieve?

ztd.text’s answer is simple:

1.5. Design Goals and Philosophy 33

https://hsivonen.fi/non-unicode-in-cpp/
https://encoding.spec.whatwg.org/

ztd.text, Release 0.0.0

Allow Both, Prefer One

ztd.text prefers Henri Sivonen’s approach to the library in general. The code_unit type is generally a weakly-typed
choice of one of the 6 viable code unit types in C++ (char, wchar_t, unsigned char, char8_t, charl6_t, and
char32_t). The code_point type is typically just unicode_code_point (an alias for char32_t by default) or
unicode_scalar_value (a strong type by default, because it carries extra pertinent information about itself that
can aid the library). Unfortunately, this means that z7d::text::default_code_point_encoding_t is not a very rich type
mapping (it generally just spits out UTF-8).

This does not mean all future algorithms bear the burden of supporting an infinity of text encodings. But, the work for
encoding and decoding text is isolated and constrained specifically to the encoding objects, view types, and functions
that power this library. Down-stream algorithms — like those found in Zach Laine’s Boost.Text — work only with
range/iterator types whose value_type are either unicode_code_points or unicode_scalar_values.

By having a core, standard ecosystem that works primarily with unicode_code_point and unicode_scalar_value,
we heavily incentivize the use of these two types as the only interchange types. Furthermore, because all of the en-
codings provided by this library use unicode_code_point as their code_point type, we set a strong example for
the rest of the ecosystem who may work with and look at these files. This is even the case for the default byte-based
encoding ztd::text::any_encoding, which strongly incentivizes compatibility with the ecosystem by making it clear that
there is a preferred default mode of communication (which is, ztd::text::unicode_code_point). In effect, we produce
The Unicode™ Vortex™:

34 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Your Glorious

¥>Unicode ¥>

Application

This might be the perfect world for most people, but even so there’s room inside that funneled vortex for more.

1.5. Design Goals and Philosophy 35

ztd.text, Release 0.0.0

Leaving Room

There is room in Sivonen’s world, even with perfectly-consistent and fully-Unicode internals, for Honermann’s dream
of never losing encoding information at even the lowest levels. After all, if someone takes the time to wrap up external
interfaces (Shared Pipes, Network Connections, Terminal Interfaces, char Devices, and more), they should have the
ability to tag these interfaces with either encoding objects or strong, reinterpret_cast-able pointer values.

That’s why encodings can still define their own code_unit and code_point types; even if this library — or the
Standard Library — traffics in strictly unicode_code_points, it doesn’t mean the user should be forced to do that if
they are willing to put in the effort for a more type-safe world.

Being able to know, at compile time, without any objects or markup, that a particular pointer + size pairing is meant
for a specific encoding is a powerful way to maintain invariants and track the flow of data without runtime cost through
a program. It can also make it easy to find places where external, non-Unicode data is making it “too far” into the
system, and try to push a conversion closer to the edges of the program.

While ztd.text will traffic and work with char32_t and consider it a unicode_code_point value under most circum-
stances, users are free to define and extend this classification for their own types and generally create as strict (or loose)
as taxonomy as they desire.

In Sum

The library still overwhelmingly traffics in Unicode, and we believe that by making it the default and producing
an overwhelming body of code that treats it as such as can push people towards that default. Using char32_ts,
unicode_code_points, and unicode_scalar_values as Sivonen advocates should have a very low “activation
energy”’. Reaching for the strict world envisioned with Honermann’s text_view and its associated implementation is
still possible, but requires more energy. We do not force the user to put in that energy.

As long as both are possible, users can find satisfaction for both of their use cases. Even if Honermann’s design is more
work, it is still quite useful and can lead to a very robust and statically-verifiable design in even huge, complex software
systems.

1.5.6 Lucky 7 Extension - Beyond the Basics

While the given Lucky 7 represents the simplest possible encoding object one can design, there are several more type
definitions, member functions, and other things an individual can use to create more complex encoding objects. Below,
we are going to review the most pertinent ones that allow for better extensibility of the core design and let you go Even
Further Beyond.

Separate Encode/Decode States

It is no secret that encoding and decoding may carrying with them separate states. While converting from a legacy
encoding to Unicode may require maintenance of a shift state or code unit modifier, the opposite direction may not need
any at all. Therefore, as an optimization, an encoding object can define both an encode_state and a decode_state,
seperate from each other. As an example, here is a (simplified) version of how zzd::text::execution, the encoding for
the Locale-based Runtime Execution Encoding, has two seperate states that need to be initialized in different manners:

class runtime_locale {
public:
struct decode_state {
std: :mbstate_t c_stdlib_state;

(continues on next page)

36 Chapter 1. Who Is This Library For?

https://www.youtube.com/watch?v=tTelnNmRUH0
https://www.youtube.com/watch?v=tTelnNmRUH0

ztd.text, Release 0.0.0

(continued from previous page)

decode_state() noexcept : c_stdlib_state() {
// properly set for mbrtoc32 state
code_point ghost_ouput[2] {};
UCHAR_ACCESS mbrtoc32(
ghost_ouput, "\0", 1, &c_stdlib_state);

1

struct encode_state {
std: :mbstate_t c_stdlib_state;

encode_state() noexcept : c_stdlib_state() {
// properly set for c32rtomb state
code_unit ghost_ouput[MB_LEN_MAX] {};
UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);

1
(void)argc;

This is the proper way to initialize a std: :mbstate_t from the C standard library. Then, you can use it! Here’s a
complete implementation using the new encode_state and decode_state types:

class runtime_locale {
using rtl_decode_result
= ztd::text::decode_result<ztd: :span<const code_unit>,
ztd: :span<code_point>, decode_state>;
using rtl_encode_result
= ztd::text::encode_result<ztd: :span<const code_point>,
ztd: :span<code_unit>, encode_state>;
using rtl_decode_error_handler = std::function<rtl_decode_result(
const runtime_locale&, rtl_decode_result, ztd::span<const char>,
ztd: : span<const char32_t>)>;
using rtl_encode_error_handler = std::function<rtl_encode_result(
const runtime_locale&, rtl_encode_result,
ztd: :span<const char32_t>, ztd::span<const char>)>;

using empty_code_unit_span ztd: :span<const code_unit, 0>;
using empty_code_point_span = ztd::span<const code_point, 0>;

public:
rtl_decode_result decode_one(
ztd: :span<const code_unit> input, ztd::span<code_point> output,
rtl_decode_error_handler error_handler,
decode_state& current // decode-based state
) const {
if (output.size() < 1) {
return error_handler(*this,
rtl_decode_result(input, output, current,
ztd: :text::encoding_error::
insufficient_output_space),
empty_code_unit_span(), empty_code_point_span());

(continues on next page)

1.5. Design Goals and Philosophy 37

38

39

40

41

42

43

44

45

46

47

48

49

50

54

55

56

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

3

74

75

76

77

78

79

ztd.text, Release 0.0.0

(continued from previous page)

std::size_t result = UCHAR_ACCESS mbrtoc32(output.data(),
input.data(), input.size(), ¤t.c_stdlib_state);
switch (result) {
case (std::size_t)0:
// '\0' was encountered in the input
// current.c_stdlib_state was "cleared"
// '\0' character was written to output
return rtl_decode_result(
input.subspan(1l), output.subspan(l), current);
break;
case (std::size_t)-3:
// no input read, pre-stored character
// was written out
return rtl_decode_result(input, output.subspan(l), current);
case (std::size_t)-2:
// input was an incomplete sequence
return error_handler(*this,
rtl_decode_result(input, output, current,
ztd: :text::encoding_error::incomplete_sequence),
empty_code_unit_span(), empty_code_point_span());
break;
case (std::size_t)-1:
// invalid sequence!
return error_handler(*this,
rtl_decode_result(input, output, current,
ztd: :text::encoding_error::invalid_sequence),
empty_code_unit_span(), empty_code_point_span());
}
// everything as fine, then
return rtl_decode_result(
input.subspan(result), output.subspan(l), current);

rtl_encode_result encode_one(
ztd: : span<const code_point> input, ztd::span<code_unit> output,
rtl_encode_error_handler error_handler,
encode_state& current // encode-based state
) const {
// saved, in case we need to go
// around mulitple times to get
// an output character
ztd: :span<const code_point> original_input = input;
// The C standard library assumes
// it can write out MB_CUR_MAX characters to the buffer:
// we have no guarantee our output buffer is that big, so it
// needs to go into an intermediate buffer instead
code_unit intermediate_buffer[MB_LEN_MAX];

for (int times_around = 0;; ++times_around) {
if (input.size() < 1) {
// no more input: everything is fine
return rtl_encode_result(input, output, current);

(continues on next page)

38 Chapter 1. Who Is This Library For?

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

121

ztd.text, Release 0.0.0

(continued from previous page)

3

}
std::size_t result
= UCHAR_ACCESS c32rtomb(intermediate_buffer,
“input.data(), ¤t.c_stdlib_state);
if (result == (std::size_t)-1) {
// invalid sequence!
return error_handler(*this,
rtl_encode_result(original_input, output, current,
ztd: :text::encoding_error: :invalid_sequence),
empty_code_point_span(), empty_code_unit_span());
}
else if (result == (std::size_t)0) {
// this means nothing was output
// we should probably go-around again,
// after modifying input
input = input.subspan(l);
continue;
}
// otherwise, we got something written out!
if (output.size() < result) {
// can't fit!!
return error_handler(*this,
rtl_encode_result(original_input, output, current,
ztd: :text::encoding_error::
insufficient_output_space),
empty_code_point_span(), empty_code_unit_span());
}
::std: :memcpy(output.data(), intermediate_buffer,
sizeof(*intermediate_buffer) * result);
input = input.subspan(l);
output = output.subspan(result);
break;

return rtl_encode_result(input, output, current);

};

int main(int argc, char* argv[]) {

(void)argc;

This allows you to maintain 2 different states, initialized in 2 different ways, one for each of the encode_one and

decode_one paths.

1.5. Design Goals and Philosophy

39

ztd.text, Release 0.0.0

Injective: Promoting Safety in Encodings

As detailed in the Lossy Operation Protection section, is_encode_injective and is_decode_injective help the
library understand when a conversion you are doing cannot be guaranteed at compile time to be lossless. Injectivity is
a high-brow mathematical term:

In mathematics, an injective function (also known as injection, or one-to-one function) is a function that
maps distinct elements of its domain to distinct elements of its codomain.

—Wikipedia, February 2nd, 2021

This is very fancy speak for the fact that for every complete, well-formed input value, there is a well-formed, distinct
output value. It does not have to cover all of the potential output values: so long as there is a one-to-one mapping
that is unambigious for all the input values, it is injective. For practical purposes, it means that all of the code unit
sequences that are valid can produce a unique code point sequence (“the decode operation is injective”). And, in the
reverse case, it means that all the code point sequences that are valid can produce a unique code unit sequence (“‘the
encode operation is injective”).

These two properties appear on the type itself, and is a way to opt-in to saying that a conversion is not lossy (e.g., it
preserves information perfectly if the input is well-formed). You can define them by placing them on your Encoding
Object Type’s definition:

struct any_unicode_byte_encoding {
using is_decode_injective = std::true_type;
using is_encode_injective = std::true_type;
using code_unit = std::byte;
using code_point = ztd::text::unicode_scalar_value;
/) ..
};

This signals that the encode_one and decode_one functions — if they are given well-formed input — will never be
lossy between their code_point type and their code_unit types when performing the desired operation. If only one
half of that equation is lossy, then you can mark only one, or the other. For example, ztd::text::ascii is lossy only in
for the encode_one operation, so it has is_decode_injective = std::true_type; for decode operations, but
is_encode_injective = std::false_type; for encode operations:

/17777

/// @brief The individual units that result from an encode operation or are used.
—-as input to a decode

/// operation.

/// @remarks ASCII can decode from its 7-bit (unpacked) code units to Unicode.
—Code Points. Since the converion

/// is lossless, this property is true.

I

using is_decode_injective = ::std::true_type;

Yoy

/// @brief Whether or not the encode operation can process all forms of input.,
—into code unit values. This is

/// not true for ASCII, as many Unicode Code Point and Unicode Scalar Values.
—>cannot be represented in ASCII.

/// Since the conversion is lossy, this property is false.

/1777

using is_encode_injective = ::std::false_type;

/17777

/// @brief The maximum code units a single complete operation of encoding can.
—produce.

(continues on next page)

40 Chapter 1. Who Is This Library For?

https://en.wikipedia.org/wiki/Injective_function

ztd.text, Release 0.0.0

(continued from previous page)

inline static constexpr const ::std::size_t max_code_units = 1;
::std: :move(__inlast)),

If the type definition is not present and is not std: : true_type, then the implementation assumes that this is false for
a given encoding. See ztd::text::is_decode_injective and ztd: :text::is_encode_injective for more information.

Replacement Characters

Replacement characters are a way to communicate to the end-user that something went wrong, without having to throw
an exception that may stop the world or stop the encoding/decoding process altogether. The default error handler for text
(ztd: :text: :default_handler, unless configured otherwise) provides room for you to provide your own encoding types,
and it does so in two ways that is recognized by the library:

Always Has A Replacement

If your type always has a replacement character, regardless of the situation, it can signal this by writing one of two
functions:

* replacement_code_units() (for any failed encode step)
e replacement_code_points() (for any failed decode step)

These functions return a contiguous range of either code_units or code_points, typically a std: :span<const
code_unit> ora std: :span<const code_point>.

class runtime_locale {
public:
ztd: :span<const code_unit> replacement_code_units() const noexcept {
if (this->contains_unicode_encoding()) {
// Probably CESU-8 or UTF-8!
static const char replacement[3]
= { "\xEF', "\xBF', '\xBD' };
return replacement;

}
else {
// Uh... well, it probably has this? _(_/"
static const char replacement[1] = { '?' };
return replacement;
}
}
(void)argc;

If the given replacement range is empty, then nothing is inserted at all (as this is a deliberate choice from the user. See
the next section for how to have this function but graciously return “no replacements” for given runtime conditions).

This is employed, for example, in the ztd::text::ascii encoding, which uses a ?’ as its replacement code_unit and
code_point value.

1.5. Design Goals and Philosophy 41

ztd.text, Release 0.0.0

Maybe Has A Replacement

If your type might not have a range of replacement characters but you will not know that until run time, regardless of
the situation, the encoding type can signal this by writing different functions:

* maybe_replacement_code_units() (for any failed encode step)
* maybe_replacement_code_points() (for any failed decode step)

These functions return a std: :optional of a contiguous range of either code_units or code_points, typically a
std::optional<std: :span<const code_unit>> ora std::optional<std::span<const code_point>>. If
the optional is not engaged (it does not have a value stored), then the replacement algorithm uses its default logic to
insert a replacement character, if possible. Otherwise, if it does have a value, it uses that range. If it has a value but the
range is empty, it uses that empty range (and inserts nothing).

This is useful for encodings which provide runtime-erased wrappers or that wrap platform APIs like
Win32, whose CPINFOEXW structure contains both a WCHAR UnicodeDefaultChar; and a BYTE
DefaultChar[MAX_DEFAULTCHAR] ;. These can be provided as the range values after being stored on the en-
coding, or similar.

The Default

When none of the above can happen, the zzd::text: :replacement_handler_t will attempt to insert a Unicode Replacement
Character (, U'\uFFFD"') or the ‘?’ character into the stream, in various ways. See ztd::text::replacement_handler_t
for more details on that process!

Marking an encoding as Unicode-Capable

Sometimes, you need to make your own encodings. Whether for legacy reasons or for interoperation reasons, you need
the ability to write an encoding that can losslessly handle all 221 code points. Whether it’s writing a variant of UTF-7,
or dealing with a very specific legacy set like Unicode v6.0 with the Softbank Private Use Area, you are going to need
to be able to say “hey, my encoding can handle all of the code points and therefore deserves to be treated like a Unicode
encoding”. There are 2 ways to do this, one for decisions that can be made at compile time, and one for decisions that
can be made at runtime (e.g., over a variant_encoding<X, Y, Z>).

compile time

The cheapest way to tag an encoding as Unicode Capable and have the library recognize it as such when
ztd: :text::is_unicode_encoding is used is to just define a member type definition:

class utf8_v6_softbank {

public:
/)
using is_unicode_encoding = std::true_type;
/)

}s

That s all you have to write. Both zzd::text::is_unicode_encoding and ztd: :text::contains_unicode_encoding will detect
this and use it.

42 Chapter 1. Who Is This Library For?

https://docs.microsoft.com/en-us/windows/win32/api/winnls/ns-winnls-cpinfoexw
https://en.wikipedia.org/wiki/UTF-7

23

24

25

26

27

28

ztd.text, Release 0.0.0

Run-time

If your encoding cannot know at compile time whether or not it is a unicode encoding (e.g., for type-erased encodings,
complex wrapping encodings, or encodings which rely on external operating system resources), you can define a method
instead. When applicable, this will be picked up by the zzd::text::contains_unicode_encoding function. Here is an
example of a runtime, locale-based encoding using platform-knowledge to pick up what the encoding might be, and
determine if it can handle working in Unicode:

#endif

struct encode_state {
std: :mbstate_t c_stdlib_state;

encode_state() noexcept : c_stdlib_state() {
// properly set for c32rtomb state
code_unit ghost_ouput[MB_LEN_MAX] {};
UCHAR_ACCESS c32rtomb(ghost_ouput, U'\0', &c_stdlib_state);

};

bool contains_unicode_encoding() const noexcept {
#1f defined(_WIN32)

CPINFOEXW cp_info {};
BOOL success = GetCPInfoExW(CP_THREAD_ACP, 0, &cp_info);
if (success == 0) {

return false;
}
switch (cp_info.CodePage) {
case 65001: // UTF-8

// etc. etc.

return true;
default:

break;

empty_code_point_span(), empty_code_unit_span());

That is it. ztd::text::contains_unicode_encoding will detect this and use your function call, so you should never
be calling this or accessing the above compile time classification if necessary and always delegating to the
ztd::text::contains_unicode_encoding function call.

Encoding-Dependent States

Some states need additional information in order to be constructed and used properly. This can be the case
when the encoding has stored some type-erased information, as ztd::text::any_encoding does, or as if you wrote a
variant_encoding<utf8le, utfl6be, ...>. For example, given a type_erased_encoding like so:

class type_erased_encoding {
private:
struct erased_state {
virtual ~erased_state () {}

};

(continues on next page)

1.5. Design Goals and Philosophy 43

24

25

26

27

39

40

41

42

43

44

45

46

47

48

49

52

53

54

55

57

58

ztd.text, Release 0.0.0

(continued from previous page)

struct erased_encoding {

};

virtual std::unique_ptr<erased_state> create_decode_state()
virtual std::unique_ptr<erased_state> create_encode_state() = 0;

I
(=]

virtual ~erased_encoding () {}

template <typename Encoding>
struct typed_encoding : erased_encoding {

};

Encoding encoding;

struct decode_state : erased_state {
using state_type = ztd::text::decode_state_t<Encoding>;
state_type state;

decode_state(const Encoding& some_encoding)
state(ztd: :text: :make_decode_state(some_encoding)) {
// get a decode state from the given encoding

};

struct encode_state : erased_state {
using state_type = ztd::text::encode_state_t<Encoding>;
state_type state;

decode_state(const Encoding& some_encoding)
state(ztd: :text: :make_encode_state(some_encoding)) {
// get a decode state from the given encoding

1

typed_encoding (Encoding&& some_encoding)
encoding(std: :move(some_encoding)) {
// move encoding in

typed_encoding(const Encoding& some_encoding)
encoding(some_encoding) {
// copy encoding in

virtual std::unique_ptr<erased_state> create_decode_state() override {
return std::make_unique<decode_state>(encoding);

virtual std::unique_ptr<erased_state> create_encode_state() override {
return std::make_unique<encode_state>(encoding);

std: :unique_ptr<erased_encoding> stored;

(continues on next page)

44

Chapter 1. Who Is This Library For?

59

60

61

62

63

64

65

66

67

68

69

20

21

22

23

24

25

27

28

29

ztd.text, Release 0.0.0

(continued from previous page)

public:
template <typename AnyEncoding>
type_erased(AnyEncoding&& some_encoding)
stored_ptr(std: :make_unique<typed_encoding<std: :remove_cvref_ t<AnyEncoding>>>(
std: : forward<AnyEncoding>(some_encoding))

) H

// store any encoding in the member unique pointer

// ... rest of the implementation

1

We can see that creating a state with a default constructor no longer works, because the state itself requires more
information than can be known by just the constructor itself. It needs access to the wrapped encoding. The solution to
this problem is an opt-in when creating your state types by giving your state type a constructor that takes the encoding

type:

class type_erased_encoding {
// from above, etc.

public:
// public-facing wrappers
struct type_erased_decode_state {
public:
// special constructor!!
type_erased_state (const type_erased_encoding& encoding)
stored(encoding.stored->create_decode_state()) {
}
private:
std: :unique_ptr<erased_state> stored;
b
struct type_erased_encode_state {
public:
// special constructor!!
type_erased_state (const type_erased_encoding& encoding)
stored(encoding.stored->create_encode_state()) {
// hold onto type-erased state
}
private:
std: :unique_ptr<erased_state> stored;
1
using decode_state = type_erased_state;
using encode_state = type_erased_state;
// ... rest of the Lucky 7 members
3

These special constructors will create the necessary state using information from the type_erased_encoding to do
it properly. This will allow us to have states that properly reflect what was erased when we perform a given higher-level
conversion operation or algorithm.

1.5. Design Goals and Philosophy 45

ztd.text, Release 0.0.0

This encoding-aware state-construction behavior is detected by the ztd::text::is_state_independent,
ztd: :text::is_decode_state_independent, and ztd::text::is_encode_state_independent classifications.

These classifications are used in the zzd::text::make _decode state and ztd: :text::make _encode_state function calls to
correctly construct a state object, which is what the API uses to make states for its higher-level function calls. If you
are working in a generic context, you should use these functions too when working in this minute details. However, if
you’re not working with templates, consider simply using the already-provided ztd::text::any_encoding to do exactly
what this example shows, with some extra attention to detail and internal optimizations done on your behalf.

Need for Speed: Extension Points

The core encoding/decoding loops and the Lucky 7 design, while flexible, can come with performance degradation due
to its one-by-one nature. There are many well-researched speedups to validating, counting, and converting UTF and
other kinds of text. In order to accommodate these, ztd.text has a number of places to overload the core behavior by
way of named Argument Dependent Lookup (ADL or Koenig Lookup, named after Andrew Koenig) functions that
serve as extension points. They are listed, with their expected argument forms / counts, here.

Extension points: Arguments

For all extension points, arguments are given based on what was input to one of the original higher-level functions.
They have these forms and general requimrents:

e tag - The first argument to every extension point that takes a single encoding. The tag type is
ztd::text::tag<decltype(encoding)> with any const, volatile, or references (& and &&) removed from the
decltype of the encoding.

e duo_tag - The first argument to every extension point that takes 2 encodings. The tag type is
ztd: :text: :tag<decltype(from_encoding), decltype(to_encoding)> with any const, volatile, or references (&
and &&) removed from the decltype of the two encodings.

* encoding - The encoding used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two encodings used to perform e.g. a transcode operation.

e input - The input range. Can be of any type. Most encodings should at the very least handle basic iterator-iterator
pairs correctly. These are allowed to have const-correct iterators that produce const-correct references, so never
assume you can write to the input, and appropriately const-qualify any std: : spans you use.

e output - The output range. Can be of any output range type, such as a unbounded_view<> with a
back_inserter or a std: : span for direct memory writes. The types only requirement is that you can write to
it by getting an iterator from begin(...), and calling *it = value;.

* handler - The error handler used to perform the operation. Can be prefixed with from_ or to_ in the argument
list to show it is one of two error handlers used to perform e.g. a transcode operation.

e state - The state objects used to perform the operation. States are always passed by non-const, 1-value refer-
ence. Can be prefixed with from_ or to_ in the argument list to show it is one of two states associated with an
encoding with the same prefix.

46 Chapter 1. Who Is This Library For?

ztd.text, Release 0.0.0

Extension Points: Forms & Return Types

Overriding any one of these extension points allows you to hook that behavior. It is very much required that you either
use concrete types to provide these ADL extension points, or heavily constrain them using SFINAE (preferred for
C++17 and below) or Concepts (only C++20 and above).

text_decode

Form: text_decode(tag, input, encoding, output, handler, state).

An extension point to speed up decoding operations for a given encoding, its input and outpuut ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a zzd::text: :decode_result.

text_encode

Form: text_encode(input, encoding, output, handler, state).

An extension point to speed up encoding operations for a given encoding, its input and outpuut ranges, and the associated
error handler and state. This can be helpful for encodings which may need to hide certain parts of their state.

Must return a ztd: :text::encode_result.

text_transcode

Form: text_transcode(input, from_encoding, output, to_encoding, from_handler, to_handler,
from_state, to_state)

An extension point to speed up transcoding in bulk, for a given encoding pair, its input and output ranges, and its error
handlers and states. Useful for known encoding pairs that have faster conversion paths between them.

Must return a ztd: :text: :transcode_result.

text_transcode_one

Form: text_transcode_one(input, from_encoding, output, to_encoding, from_handler,
to_handler, from_state, to_state)

An extension point to provide faster one-by-one encoding transformations for a given encoding pair, its input and
output ranges, and its error handlers and states. This is not a bulk extension point conversion. It is used in the
ztd: :text: :transcode_view type to increase the speed of iteration, where possible.

Must return a zzd: :text: :transcode_result.

1.5. Design Goals and Philosophy 47

https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/concepts

ztd.text, Release 0.0.0

text_validate_encodable_as_one

Form: text_validate_encodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
decode_one and an encode_one step during the basic validation loop.

Must return a zzd: :text::validate result.

text_validate_decodable_as_one

Form: text_validate_decodable_as_one(input, encoding, state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd::text: :validate_result.

text_validate_transcodable_as_one

Form: text_validate_decodable_as_one(input, from_encoding, to_encoding, decode_state,
encode_state)

An extension point to provide faster one-by-one validation. Provides a shortcut to not needing to perform both a
encode_one and an decode_one step during the basic validation loop.

Must return a ztd: :text: :validate_transcode_result.

text_validate_encodable_as

Form: text_validate_encodable_as(input, encoding, state)

An extension point to provide faster bulk code point validation. There are many tricks to speed up validationg of text
using bit twiddling of the input sequence a